TY - JOUR
T1 - High-Resolution Global Water Temperature Modeling
AU - Wanders, Niko
AU - van Vliet, Michelle T.H.
AU - Wada, Yoshihide
AU - Bierkens, Marc F.P.
AU - van Beek, Ludovicus P.H.(Rens)
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-18
PY - 2019/4/1
Y1 - 2019/4/1
N2 - The temperature of river water plays a crucial role in many physical, chemical, and aquatic ecological processes. Despite the importance of having detailed information on this environmental variable at locally relevant scales (≤50 km), high-resolution simulations of water temperature on a large scale are currently lacking. We have developed the dynamical 1-D water energy routing model (DynWat), that solves both the energy and water balance, to simulate river temperatures for the period 1960–2014 at a nominal 10-km and 50-km resolution. The DynWat model accounts for surface water abstraction, reservoirs, riverine flooding, and formation of ice, enabling a realistic representation of the water temperature. We present a novel 10-km water temperature data set at the global scale for all major rivers, lakes, and reservoirs. Validated results against 358 stations worldwide indicate a decrease in the simulated root-mean-square error (0.2 °C) and bias (0.7 °C), going from 50- to 10-km simulations. We find an average global increase in water temperature of 0.16 °C per decade between 1960 and 2014, with more rapid warming toward 2014. Results show increasing trends for the annual daily maxima in the Northern Hemisphere (0.62 °C per decade) and the annual daily minima in the Southern Hemisphere (0.45 °C per decade) for 1960–2014. The high-resolution modeling framework not only improves the model performance, it also positively impacts the relevance of the simulations for regional-scale studies and impact assessments in a region without observations. The resulting global water temperature data set could help to improve the accuracy of decision-support systems that depend on water temperature estimates.
AB - The temperature of river water plays a crucial role in many physical, chemical, and aquatic ecological processes. Despite the importance of having detailed information on this environmental variable at locally relevant scales (≤50 km), high-resolution simulations of water temperature on a large scale are currently lacking. We have developed the dynamical 1-D water energy routing model (DynWat), that solves both the energy and water balance, to simulate river temperatures for the period 1960–2014 at a nominal 10-km and 50-km resolution. The DynWat model accounts for surface water abstraction, reservoirs, riverine flooding, and formation of ice, enabling a realistic representation of the water temperature. We present a novel 10-km water temperature data set at the global scale for all major rivers, lakes, and reservoirs. Validated results against 358 stations worldwide indicate a decrease in the simulated root-mean-square error (0.2 °C) and bias (0.7 °C), going from 50- to 10-km simulations. We find an average global increase in water temperature of 0.16 °C per decade between 1960 and 2014, with more rapid warming toward 2014. Results show increasing trends for the annual daily maxima in the Northern Hemisphere (0.62 °C per decade) and the annual daily minima in the Southern Hemisphere (0.45 °C per decade) for 1960–2014. The high-resolution modeling framework not only improves the model performance, it also positively impacts the relevance of the simulations for regional-scale studies and impact assessments in a region without observations. The resulting global water temperature data set could help to improve the accuracy of decision-support systems that depend on water temperature estimates.
UR - https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018WR023250
UR - http://www.scopus.com/inward/record.url?scp=85063913593&partnerID=8YFLogxK
U2 - 10.1029/2018WR023250
DO - 10.1029/2018WR023250
M3 - Article
SN - 1944-7973
VL - 55
SP - 2760
EP - 2778
JO - Water Resources Research
JF - Water Resources Research
IS - 4
ER -