High Responsivity and Response Speed Single-Layer Mixed-Cation Lead Mixed-Halide Perovskite Photodetectors Based on Nanogap Electrodes Manufactured on Large-Area Rigid and Flexible Substrates

Dimitra G. Georgiadou, Yen Hung Lin, Jongchul Lim, Sinclair Ratnasingham, Martyn A. McLachlan, Henry J. Snaith, Thomas D. Anthopoulos

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Mixed-cation lead mixed-halide perovskites are employed as the photoactive material in single-layer solution-processed photodetectors fabricated with coplanar asymmetric nanogap Al–Au and indium tin oxide–Al electrodes. The nanogap electrodes, bearing an interelectrode distance of ≈10 nm, are patterned via adhesion lithography, a simple, low-cost, and high-throughput technique. Different electrode shapes and sizes are demonstrated on glass and flexible plastic substrates, effectively engineering the device architecture, and, along with perovskite film and material optimization, paving the way toward devices with tunable operational characteristics. The optimized coplanar nanogap junction perovskite photodetectors show responsivities up to 33 A W−1, specific detectivity on the order of 1011 Jones, and response times below 260 ns, while retaining a low dark current (0.3 nA) under −2 V reverse bias. These values outperform the vast majority of perovskite photodetectors reported so far, while avoiding the complicated fabrication steps involved in conventional multilayer device structures. This work highlights the promising potential of the proposed asymmetric nanogap electrode architecture for application in the field of flexible optoelectronics.
Original languageEnglish (US)
Pages (from-to)1901371
JournalAdvanced Functional Materials
Volume29
Issue number28
DOIs
StatePublished - May 8 2019

Fingerprint

Dive into the research topics of 'High Responsivity and Response Speed Single-Layer Mixed-Cation Lead Mixed-Halide Perovskite Photodetectors Based on Nanogap Electrodes Manufactured on Large-Area Rigid and Flexible Substrates'. Together they form a unique fingerprint.

Cite this