TY - JOUR
T1 - High throughput generation and trapping of individual agarose microgel using microfluidic approach
AU - Shi, Yang
AU - Gao, Xinghua
AU - Chen, Longqing
AU - Zhang, Min
AU - Ma, Jingyun
AU - Zhang, Xixiang
AU - Qin, Jianhua
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This research was supported by the Joint Research Fund of NSFC-RGC (11161160522, N_HKUST601/11), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-H18), and Instrument Research and Development Program of the Chinese Academy of Sciences (YZ200908).
PY - 2013/2/28
Y1 - 2013/2/28
N2 - Microgel is a kind of biocompatible polymeric material, which has been widely used as micro-carriers in materials synthesis, drug delivery and cell biology applications. However, high-throughput generation of individual microgel for on-site analysis in a microdevice still remains a challenge. Here, we presented a simple and stable droplet microfluidic system to realize high-throughput generation and trapping of individual agarose microgels based on the synergetic effect of surface tension and hydrodynamic forces in microchannels and used it for 3-D cell culture in real-time. The established system was mainly composed of droplet generators with flow focusing T-junction and a series of array individual trap structures. The whole process including the independent agarose microgel formation, immobilization in trapping array and gelation in situ via temperature cooling could be realized on the integrated microdevice completely. The performance of this system was demonstrated by successfully encapsulating and culturing adenoid cystic carcinoma (ACCM) cells in the gelated agarose microgels. This established approach is simple, easy to operate, which can not only generate the micro-carriers with different components in parallel, but also monitor the cell behavior in 3D matrix in real-time. It can also be extended for applications in the area of material synthesis and tissue engineering. © 2013 Springer-Verlag Berlin Heidelberg.
AB - Microgel is a kind of biocompatible polymeric material, which has been widely used as micro-carriers in materials synthesis, drug delivery and cell biology applications. However, high-throughput generation of individual microgel for on-site analysis in a microdevice still remains a challenge. Here, we presented a simple and stable droplet microfluidic system to realize high-throughput generation and trapping of individual agarose microgels based on the synergetic effect of surface tension and hydrodynamic forces in microchannels and used it for 3-D cell culture in real-time. The established system was mainly composed of droplet generators with flow focusing T-junction and a series of array individual trap structures. The whole process including the independent agarose microgel formation, immobilization in trapping array and gelation in situ via temperature cooling could be realized on the integrated microdevice completely. The performance of this system was demonstrated by successfully encapsulating and culturing adenoid cystic carcinoma (ACCM) cells in the gelated agarose microgels. This established approach is simple, easy to operate, which can not only generate the micro-carriers with different components in parallel, but also monitor the cell behavior in 3D matrix in real-time. It can also be extended for applications in the area of material synthesis and tissue engineering. © 2013 Springer-Verlag Berlin Heidelberg.
UR - http://hdl.handle.net/10754/562664
UR - http://link.springer.com/10.1007/s10404-013-1160-6
UR - http://www.scopus.com/inward/record.url?scp=84885318708&partnerID=8YFLogxK
U2 - 10.1007/s10404-013-1160-6
DO - 10.1007/s10404-013-1160-6
M3 - Article
SN - 1613-4982
VL - 15
SP - 467
EP - 474
JO - Microfluidics and Nanofluidics
JF - Microfluidics and Nanofluidics
IS - 4
ER -