Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

Taesoo Kim, Elenita Palmiano, Ru-Ze Liang, Hanlin Hu, Murali Banavoth, Ahmad R. Kirmani, Yuliar Firdaus, Yangqin Gao, Arif D. Sheikh, Mingjian Yuan, Omar F. Mohammed, Sjoerd Hoogland, Pierre Beaujuge, Edward H. Sargent, Aram Amassian

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.
Original languageEnglish (US)
Pages (from-to)223903
JournalApplied Physics Letters
Issue number22
StatePublished - Jun 1 2017


Dive into the research topics of 'Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption'. Together they form a unique fingerprint.

Cite this