Hydrogen addition for improved lean burn capability of slow and fast burning natural gas combustion chambers

Per Tunestål*, Magnus Christensen, Patrik Einewall, Tobias Andersson, Bengt Johansson, Owe Jönsson

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

56 Scopus citations

Abstract

One way to extend the lean burn limit of a natural gas engine is by addition of hydrogen to the primary fuel. This paper presents measurements made on a one cylinder 1.6 liter natural gas engine. Two combustion chambers, one slow and one fast burning, were tested with various amounts of hydrogen (0, 5, 10 and 15 %-vol) added to natural gas. Three operating points were investigated for each combustion chamber and each hydrogen content level; idle, part load (5 bar IMEP) and 13 bar IMEP (simulated turbocharging). Air/fuel ratio was varied between stoichiometric and the lean limit. For each operating point, a range of ignition timings were tested to find maximum brake torque (MBT) and/or knock. Heat-release rate calculations were made in order to assess the influence of hydrogen addition on burn rate. Addition of hydrogen showed an increase in burn rate for both combustion chambers, resulting in more stable combustion close to the lean limit. This effect was most pronounced for lean operation with the slow combustion chamber.

Original languageEnglish (US)
DOIs
StatePublished - Dec 1 2002
EventPowertrain and Fluid Systems Conference and Exhibition - San Diego, CA, United States
Duration: Oct 21 2002Oct 24 2002

Other

OtherPowertrain and Fluid Systems Conference and Exhibition
Country/TerritoryUnited States
CitySan Diego, CA
Period10/21/0210/24/02

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Hydrogen addition for improved lean burn capability of slow and fast burning natural gas combustion chambers'. Together they form a unique fingerprint.

Cite this