Hyperelastic anisotropic microplane constitutive model for annulus fibrosus

Ferhun C. Caner*, Zaoyang Guo, Brian Moran, Zdeněk P. Bažant, Ignacio Carol

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


In a recent paper, Peng et al. (2006, "An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Interaction for the Human Annulus Fibrosis," ASME J. Appl. Mech., 73(5), pp. 815-824) developed an anisotropic hyperelastic constitutive model for the human annulus fibrosus in which fiber-matrix interaction plays a crucial role in simulating experimental observations reported in the literature. Later, Guo et al. (2006, "A Composites-Based Hyperelastic Constitutive Model for Soft Tissue With Application to the Human Fibrosis," J. Mech. Phys. Solids, 54(9), pp. 1952-1971) used fiber reinforced continuum mechanics theory to formulate a model in which the fiber-matrix interaction was simulated using only composite effect. It was shown in these studies that the classical anisotropic hyperelastic constitutive models for soft tissue, which do not account for this shear interaction, cannot accurately simulate the test data on human annulus fibrosus. In this study, we show that the microplane model for soft tissue developed by Caner and Carol (2006, "Microplane Constitutive Model and Computational Framework for Blood Vessel Tissue," ASME J. Biomech. Eng., 128(3), pp. 419-427) can be adjusted for human annulus fibrosus and the resulting model can accurately simulate the experimental observations without explicit fiber-matrix interaction because, in microplane model, the shear interaction between the individual fibers distributed in the tissue provides the required additional rigidity to explain these experimental facts. The intensity of the shear interaction between the fibers can be adjusted by adjusting the spread in the distribution while keeping the total amount of the fiber constant. A comparison of results obtained from (i) a fiber-matrix parallel coupling model, which does not account for the fiber-matrix interaction, (ii) the same model but enriched with fiber-matrix interaction, and (iii) microplane model for soft tissue adapted to annulus fibrosus with two families of fiber distributions is presented. The conclusions are (i) that varying degrees of fiber-fiber and fiber-matrix shear interaction must be taking place in the human annulus fibrosus, (ii) that this shear interaction is essential to be able to explain the mechanical behavior of human annulus fibrosus, and (iii) that microplane model can be fortified with fiber-matrix interaction in a straightforward manner provided that there are new experimental data on distribution of fibers, which indicate a spread so small that it requires an explicit fiber-matrix interaction to be able to simulate the experimental data.

Original languageEnglish (US)
Pages (from-to)632-641
Number of pages10
JournalJournal of Biomechanical Engineering
Issue number5
StatePublished - Oct 2007
Externally publishedYes

ASJC Scopus subject areas

  • Physiology (medical)
  • Biomedical Engineering


Dive into the research topics of 'Hyperelastic anisotropic microplane constitutive model for annulus fibrosus'. Together they form a unique fingerprint.

Cite this