Abstract
Iridium-based perovskites show promising catalytic activity for oxygen evolution reaction (OER) in acid media, but the iridium mass activity remains low and the active-layer structures have not been identified. Here, we report highly active 1 nm IrOx particles anchored on 9R-BaIrO3 (IrOx/9R-BaIrO3) that are directly synthesized by solution calcination followed by strong acid treatment for the first time. The developed IrOx/9R-BaIrO3 catalyst delivers a high iridium mass activity (168 A gIr-1), about 16 times higher than that of the benchmark acidic OER electrocatalyst IrO2 (10 A gIr-1), and only requires a low overpotential of 230 mV to reach a catalytic current density of 10 mA cm-2geo. Careful scanning transmission electron microscopy, synchrotron radiation-based X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy analyses reveal that, during the electrocatalytic process, the initial 1 nm IrOx nanoparticles/9R-BaIrO3 evolve into amorphous Ir4+OxHy/IrO6 octahedrons and then to amorphous Ir5+Ox/IrO6 octahedrons on the surface. Such high relative content of amorphous Ir5+Ox species derived from trimers of face-sharing IrO6 octahedrons in 9R-BaIrO3 and the enhanced metallic conductivity of the Ir5+Ox/9R-BaIrO3 catalyst are responsible for the excellent acidic OER activity. Our results provide new insights into the surface active-layer structure evolution in perovskite electrocatalysts and demonstrate new approaches for engineering highly active acidic OER nanocatalysts.
Original language | English (US) |
---|---|
Pages (from-to) | 18001-18009 |
Number of pages | 9 |
Journal | Journal of the American Chemical Society |
Volume | 143 |
Issue number | 43 |
DOIs | |
State | Published - Nov 3 2021 |
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry