Identification of the Active-Layer Structures for Acidic Oxygen Evolution from 9R-BaIrO3Electrocatalyst with Enhanced Iridium Mass Activity

Na Li, Liang Cai*, Chao Wang, Yue Lin, Jinzhen Huang, Hongyuan Sheng, Haibin Pan, Wei Zhang, Qianqian Ji, Hengli Duan, Wei Hu, Wenhua Zhang, Fengchun Hu, Hao Tan, Zhihu Sun, Bo Song, Song Jin*, Wensheng Yan*, Liang Cai*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    90 Scopus citations

    Abstract

    Iridium-based perovskites show promising catalytic activity for oxygen evolution reaction (OER) in acid media, but the iridium mass activity remains low and the active-layer structures have not been identified. Here, we report highly active 1 nm IrOx particles anchored on 9R-BaIrO3 (IrOx/9R-BaIrO3) that are directly synthesized by solution calcination followed by strong acid treatment for the first time. The developed IrOx/9R-BaIrO3 catalyst delivers a high iridium mass activity (168 A gIr-1), about 16 times higher than that of the benchmark acidic OER electrocatalyst IrO2 (10 A gIr-1), and only requires a low overpotential of 230 mV to reach a catalytic current density of 10 mA cm-2geo. Careful scanning transmission electron microscopy, synchrotron radiation-based X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy analyses reveal that, during the electrocatalytic process, the initial 1 nm IrOx nanoparticles/9R-BaIrO3 evolve into amorphous Ir4+OxHy/IrO6 octahedrons and then to amorphous Ir5+Ox/IrO6 octahedrons on the surface. Such high relative content of amorphous Ir5+Ox species derived from trimers of face-sharing IrO6 octahedrons in 9R-BaIrO3 and the enhanced metallic conductivity of the Ir5+Ox/9R-BaIrO3 catalyst are responsible for the excellent acidic OER activity. Our results provide new insights into the surface active-layer structure evolution in perovskite electrocatalysts and demonstrate new approaches for engineering highly active acidic OER nanocatalysts.

    Original languageEnglish (US)
    Pages (from-to)18001-18009
    Number of pages9
    JournalJournal of the American Chemical Society
    Volume143
    Issue number43
    DOIs
    StatePublished - Nov 3 2021

    ASJC Scopus subject areas

    • Catalysis
    • General Chemistry
    • Biochemistry
    • Colloid and Surface Chemistry

    Fingerprint

    Dive into the research topics of 'Identification of the Active-Layer Structures for Acidic Oxygen Evolution from 9R-BaIrO3Electrocatalyst with Enhanced Iridium Mass Activity'. Together they form a unique fingerprint.

    Cite this