TY - JOUR
T1 - Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis-cracking of HDPE
AU - Ibáñez, M.
AU - Artetxe, M.
AU - Lopez, G.
AU - Elordi, G.
AU - Bilbao, J.
AU - Olazar, M.
AU - Castaño, P.
N1 - Generated from Scopus record by KAUST IRTS on 2019-08-08
PY - 2014/4/27
Y1 - 2014/4/27
N2 - The pyrolysis-cracking of high-density polyethylene (HDPE) has been studied in two sequenced steps: (1) flash pyrolysis in a conical spouted bed reactor, and (2) catalytic cracking of the volatiles (waxes) in a fixed bed reactor containing a HZSM-5 zeolite catalyst, aiming light olefins as final products. The pyrolysis and cracking have been carried out isothermally at 500°C, with a continuous feed of HDPE (1gmin-1) for up to 5h (300g of HDPE fed). We have correlated the catalytic deactivation by coke (carbonaceous deposits), in terms of amount and composition, with the profiles of gas composition along time on stream and space time. The amount and composition of coke in three axial positions of the catalytic bed have been elucidated using thermogravimetric (TG-TPO) and spectroscopic techniques (13C CP-MAS NMR, Raman, FTIR, FTIR-TPO-MS and FTIR-pyridine). Our results show that there are two pathways of coke formation: (i) initiation, during the first hour on stream and particularly in the inlet of the catalytic reactor; and (ii) steady coke formation, after the first hour on stream which is more severe in the last axial position of the catalytic reactor. The initiation step stems from the degradation of the waxes produced in the pyrolysis of HDPE and causes a dropping in the mesopore area of the catalyst. The steady coke formation step is caused by the condensation of light olefins and causes the degradation of the micropore area and the Brønsted acidity of the catalyst. © 2013 Elsevier B.V.
AB - The pyrolysis-cracking of high-density polyethylene (HDPE) has been studied in two sequenced steps: (1) flash pyrolysis in a conical spouted bed reactor, and (2) catalytic cracking of the volatiles (waxes) in a fixed bed reactor containing a HZSM-5 zeolite catalyst, aiming light olefins as final products. The pyrolysis and cracking have been carried out isothermally at 500°C, with a continuous feed of HDPE (1gmin-1) for up to 5h (300g of HDPE fed). We have correlated the catalytic deactivation by coke (carbonaceous deposits), in terms of amount and composition, with the profiles of gas composition along time on stream and space time. The amount and composition of coke in three axial positions of the catalytic bed have been elucidated using thermogravimetric (TG-TPO) and spectroscopic techniques (13C CP-MAS NMR, Raman, FTIR, FTIR-TPO-MS and FTIR-pyridine). Our results show that there are two pathways of coke formation: (i) initiation, during the first hour on stream and particularly in the inlet of the catalytic reactor; and (ii) steady coke formation, after the first hour on stream which is more severe in the last axial position of the catalytic reactor. The initiation step stems from the degradation of the waxes produced in the pyrolysis of HDPE and causes a dropping in the mesopore area of the catalyst. The steady coke formation step is caused by the condensation of light olefins and causes the degradation of the micropore area and the Brønsted acidity of the catalyst. © 2013 Elsevier B.V.
UR - https://linkinghub.elsevier.com/retrieve/pii/S092633731300708X
U2 - 10.1016/j.apcatb.2013.11.023
DO - 10.1016/j.apcatb.2013.11.023
M3 - Article
SN - 0926-3373
VL - 148-149
JO - Applied Catalysis B: Environmental
JF - Applied Catalysis B: Environmental
ER -