TY - JOUR
T1 - Ignition delay measurements of a low-octane gasoline blend, designed for gasoline compression ignition (GCI) engines
AU - AlAbbad, Mohammed A.
AU - Badra, Jihad
AU - Djebbi, Khalil
AU - Farooq, Aamir
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We would like to acknowledge the funding support from Saudi Aramco under the FUELCOM program and by King Abdullah University of Science and Technology (KAUST).
PY - 2018/6/21
Y1 - 2018/6/21
N2 - A blend of low-octane (light and heavy naphtha) and high-octane (reformate) distillate fuels has been proposed for powering gasoline compression ignition (GCI) engines. The formulated 'GCI blend' has a research octane number (RON) of 77 and a motor octane number (MON) of 73.9. In addition to ~64 mole% paraffinic components, the blend contains ~20 mole% aromatics and ~15 mole% naphthenes. Experimental and modeling studies have been conducted in this work to assess autoignition characteristics of the GCI blend. Ignition delay times were measured in a shock tube and a rapid comparison machine over wide ranges of experimental conditions (20 and 40 bar, 640-1175 K, ϕ = 0.5, 1 and 2). Reactivity of the GCI blend was compared with experimental measurements of two surrogates: a multi-component surrogate (MCS) and a two-component primary reference fuel (PRF 77). Both surrogates capture the reactivity of the fuel quite well at high and intermediate temperatures. The MCS does a better job of emulating the fuel reactivity at low temperatures, where PRF 77 is more reactive than the GCI blend. Ignition delay times of the two surrogates are also simulated using detailed chemical kinetic models, and the simulations agree well with the experimental findings. The results of rate-of-production analyses show important role of cycloalkane chemistry in the overall autoignition behavior of the fuel at low temperatures.
AB - A blend of low-octane (light and heavy naphtha) and high-octane (reformate) distillate fuels has been proposed for powering gasoline compression ignition (GCI) engines. The formulated 'GCI blend' has a research octane number (RON) of 77 and a motor octane number (MON) of 73.9. In addition to ~64 mole% paraffinic components, the blend contains ~20 mole% aromatics and ~15 mole% naphthenes. Experimental and modeling studies have been conducted in this work to assess autoignition characteristics of the GCI blend. Ignition delay times were measured in a shock tube and a rapid comparison machine over wide ranges of experimental conditions (20 and 40 bar, 640-1175 K, ϕ = 0.5, 1 and 2). Reactivity of the GCI blend was compared with experimental measurements of two surrogates: a multi-component surrogate (MCS) and a two-component primary reference fuel (PRF 77). Both surrogates capture the reactivity of the fuel quite well at high and intermediate temperatures. The MCS does a better job of emulating the fuel reactivity at low temperatures, where PRF 77 is more reactive than the GCI blend. Ignition delay times of the two surrogates are also simulated using detailed chemical kinetic models, and the simulations agree well with the experimental findings. The results of rate-of-production analyses show important role of cycloalkane chemistry in the overall autoignition behavior of the fuel at low temperatures.
UR - http://hdl.handle.net/10754/628283
UR - http://www.sciencedirect.com/science/article/pii/S1540748918300981
UR - http://www.scopus.com/inward/record.url?scp=85048661967&partnerID=8YFLogxK
U2 - 10.1016/j.proci.2018.05.097
DO - 10.1016/j.proci.2018.05.097
M3 - Article
AN - SCOPUS:85048661967
SN - 1540-7489
VL - 37
SP - 171
EP - 178
JO - Proceedings of the Combustion Institute
JF - Proceedings of the Combustion Institute
IS - 1
ER -