TY - JOUR
T1 - Impact of Cesium/Rubidium Incorporation on the Photophysics of Multiple-Cation Lead Halide Perovskites
AU - Gao, Yajun
AU - Wang, Kai
AU - Wang, Mingcong
AU - Khan, Jafar Iqbal
AU - Balawi, Ahmed
AU - Liu, Wenzhu
AU - De Wolf, Stefaan
AU - Laquai, Frédéric
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2018-CARF/CCF-3079
Acknowledgements: This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2018-CARF/CCF-3079. Yajun Gao and Kai Wang contributed equally to this work
PY - 2020/4/4
Y1 - 2020/4/4
N2 - Incorporating cesium (Cs) or rubidium (Rb) cations into multiple-cation lead mixed-halide perovskites (FA0.83MA0.17Pb(I0.83Br0.17)3) increases their photovoltaic performance. In this study, the fundamental photophysics of perovskites are investigated by steady-state and transient optical spectroscopy and the reasons for the performance increase are revealed. Cs/Rb-cation incorporation slightly increases the bandgap, while exciton binding energies remain in the range of a few meV. Urbach energies are reduced, suggesting improved perovskite microstructure upon Cs/Rb incorporation. Carrier density-induced broadening of the photo-bleaching following the Burstein-Moss model is observed, and the effective carrier masses are determined to be a few tenths of the electron rest mass. From fits of the high-energy tail of the perovskite's photo bleach to Boltzmann's distribution, sub-picosecond hot carrier cooling is revealed, implying strong carrier-phonon coupling. Importantly, the charge carrier recombination dynamics indicate that Cs/Rb-incorporation reduces both the first-order (trap-assisted) and the second-order (radiative) recombination, which appears to be the main reason for the observed performance increase upon Cs/Rb-cation incorporation. Overall, this work presents a detailed study of the photophysics of multiple-cation mixed halide lead perovskites and develops a concise picture of the impact of cesium/rubidium incorporation on the photophysics and device performance.
AB - Incorporating cesium (Cs) or rubidium (Rb) cations into multiple-cation lead mixed-halide perovskites (FA0.83MA0.17Pb(I0.83Br0.17)3) increases their photovoltaic performance. In this study, the fundamental photophysics of perovskites are investigated by steady-state and transient optical spectroscopy and the reasons for the performance increase are revealed. Cs/Rb-cation incorporation slightly increases the bandgap, while exciton binding energies remain in the range of a few meV. Urbach energies are reduced, suggesting improved perovskite microstructure upon Cs/Rb incorporation. Carrier density-induced broadening of the photo-bleaching following the Burstein-Moss model is observed, and the effective carrier masses are determined to be a few tenths of the electron rest mass. From fits of the high-energy tail of the perovskite's photo bleach to Boltzmann's distribution, sub-picosecond hot carrier cooling is revealed, implying strong carrier-phonon coupling. Importantly, the charge carrier recombination dynamics indicate that Cs/Rb-incorporation reduces both the first-order (trap-assisted) and the second-order (radiative) recombination, which appears to be the main reason for the observed performance increase upon Cs/Rb-cation incorporation. Overall, this work presents a detailed study of the photophysics of multiple-cation mixed halide lead perovskites and develops a concise picture of the impact of cesium/rubidium incorporation on the photophysics and device performance.
UR - http://hdl.handle.net/10754/662494
UR - http://doi.wiley.com/10.1002/solr.202000072
UR - http://www.scopus.com/inward/record.url?scp=85083507095&partnerID=8YFLogxK
U2 - 10.1002/solr.202000072
DO - 10.1002/solr.202000072
M3 - Article
SN - 2367-198X
JO - Solar RRL
JF - Solar RRL
ER -