TY - JOUR
T1 - Impact of roughening density on the light extraction efficiency of thin-film flip-chip ultraviolet LEDs grown on SiC
AU - Saifaddin, Burhan K.
AU - Iza, Michael
AU - Foronda, Humberto
AU - Almogbel, Abdullah
AU - Zollner, Christian J.
AU - Wu, Feng
AU - Alyamani, Ahmed
AU - Albadri, Abdulrahman
AU - Nakamura, Shuji
AU - DenBaars, Steven P.
AU - Speck, James S.
N1 - KAUST Repository Item: Exported on 2021-03-12
Acknowledgements: King Abdulaziz City for Science and Technology (KACST) Technology Innovations Center (TIC) program; KACST-KAUST-UCSB Solid State Lighting Program; Solid State Lighting and Energy Electronics Center (SSLEEC) at UCSB; UCSB-Collaborative Research in Engineering, Science and Technology (CREST) Malaysia project; NSF NNIN network (ECS-0335765); NSF MRSEC Program (1650114); National Science Foundation Graduate Research Fellowship Program (1650114). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and may not reflect the views of the National Science Foundation. The authors would like to thank Claude Weisbuch for useful discussions and the cleanroom staff at UCSB nanofabrication facility.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2019/7/10
Y1 - 2019/7/10
N2 - Discovering ways to increase the LED light extraction efficiency (LEE) should help create the largest performance improvement in the power of UV AlGaN LEDs. Employing surface roughening to increase the LEE of typical AlGaN UV LEDs is challenging and not well understood, yet it can be achieved easily in AlGaN LEDs grown on SiC. We fabricate thin-film UV LEDs (~294-310 nm) grown on SiC—with reflective contacts and roughened emission surface—to study and optimize KOH roughening of N-face AlN on the LEE as a function of roughened AlN pyramid size and KOH solution temperature. The LEE increased the most (2X) when the average AlN pyramid base diagonals (d) were comparable to the electroluminescence (EL) wavelength in the AlN layer (d ~λEL; 42–52 pyramids/µm2), but the LEE enhancement diminished when d was much larger than λEL (d ~5.5λEL; 2–3 pyramids/µm2). The UV LEDs had a 10 nm p-GaN contact layer, and the forward voltage was ~6 V at ~8 A/cm2, with a voltage efficiency (VE) of ~70%. The VE of the LEDs did not change after KOH roughening. This work suggests important implications to increase the LEE of AlGaN LEDs.
AB - Discovering ways to increase the LED light extraction efficiency (LEE) should help create the largest performance improvement in the power of UV AlGaN LEDs. Employing surface roughening to increase the LEE of typical AlGaN UV LEDs is challenging and not well understood, yet it can be achieved easily in AlGaN LEDs grown on SiC. We fabricate thin-film UV LEDs (~294-310 nm) grown on SiC—with reflective contacts and roughened emission surface—to study and optimize KOH roughening of N-face AlN on the LEE as a function of roughened AlN pyramid size and KOH solution temperature. The LEE increased the most (2X) when the average AlN pyramid base diagonals (d) were comparable to the electroluminescence (EL) wavelength in the AlN layer (d ~λEL; 42–52 pyramids/µm2), but the LEE enhancement diminished when d was much larger than λEL (d ~5.5λEL; 2–3 pyramids/µm2). The UV LEDs had a 10 nm p-GaN contact layer, and the forward voltage was ~6 V at ~8 A/cm2, with a voltage efficiency (VE) of ~70%. The VE of the LEDs did not change after KOH roughening. This work suggests important implications to increase the LEE of AlGaN LEDs.
UR - http://hdl.handle.net/10754/668097
UR - https://www.osapublishing.org/abstract.cfm?URI=oe-27-16-A1074
UR - http://www.scopus.com/inward/record.url?scp=85070325109&partnerID=8YFLogxK
U2 - 10.1364/oe.27.0a1074
DO - 10.1364/oe.27.0a1074
M3 - Article
SN - 1094-4087
VL - 27
SP - A1074
JO - Optics Express
JF - Optics Express
IS - 16
ER -