TY - GEN
T1 - Impact of the Flameholder Heat Conductivity on Combustion Instability Characteristics
AU - Hong, Seunghyuck
AU - Shanbhogue, Santosh J.
AU - Ghoniem, Ahmed F.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-110-010-01
Acknowledgements: The authors would like to acknowledge the King Abdullah University of Science and Technology for their support of this research. This work was funded by the KAUST grant, number KUS-110-010-01.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2013/7/9
Y1 - 2013/7/9
N2 - In this paper, we investigate the impact of heat transfer between the flame and the flame-holder on the dynamic stability characteristics in a 50-kW backward facing step combustor. We conducted tests where we use a backward step block made of two different materials: ceramic and stainless steel whose thermal conductivities are 1.06 and 12 W/m/K, respectively. A set of experiments was conducted using a propane/air mixture at Re = 6500 for the inlet temperature of 300 - 500 K at atmospheric pressure. We measure the dynamic pressure and flame chemiluminescence to examine distinct stability characteristics using each flame-holder material over a range of operating conditions. We find that for tests with a flame-holder made of ceramic, the onset of instability is significantly delayed in time and, for certain operating conditions, disappears altogether. Stated differently, for certain operating conditions, the combustor can be stabilized by reducing the thermal conductivity of the flame-holder. As the thermal conductivity of the flame-holder increases, the combustor becomes increasingly unstable over a range of operating conditions. These results imply that the dynamic stability characteristics depend strongly on the heat transfer between the flame and the combustor wall near the flame anchoring region. Copyright © 2012 by ASME.
AB - In this paper, we investigate the impact of heat transfer between the flame and the flame-holder on the dynamic stability characteristics in a 50-kW backward facing step combustor. We conducted tests where we use a backward step block made of two different materials: ceramic and stainless steel whose thermal conductivities are 1.06 and 12 W/m/K, respectively. A set of experiments was conducted using a propane/air mixture at Re = 6500 for the inlet temperature of 300 - 500 K at atmospheric pressure. We measure the dynamic pressure and flame chemiluminescence to examine distinct stability characteristics using each flame-holder material over a range of operating conditions. We find that for tests with a flame-holder made of ceramic, the onset of instability is significantly delayed in time and, for certain operating conditions, disappears altogether. Stated differently, for certain operating conditions, the combustor can be stabilized by reducing the thermal conductivity of the flame-holder. As the thermal conductivity of the flame-holder increases, the combustor becomes increasingly unstable over a range of operating conditions. These results imply that the dynamic stability characteristics depend strongly on the heat transfer between the flame and the combustor wall near the flame anchoring region. Copyright © 2012 by ASME.
UR - http://hdl.handle.net/10754/598570
UR - https://asmedigitalcollection.asme.org/GT/proceedings/GT2012/44687/1505/250563
UR - http://www.scopus.com/inward/record.url?scp=84880205459&partnerID=8YFLogxK
U2 - 10.1115/gt2012-70057
DO - 10.1115/gt2012-70057
M3 - Conference contribution
SN - 9780791844687
SP - 1505
EP - 1516
BT - Volume 2: Combustion, Fuels and Emissions, Parts A and B
PB - ASME International
ER -