TY - JOUR
T1 - Impacts of NO on low-temperature oxidation of n-heptane in a jet-stirred reactor
AU - Zhai, Yitong
AU - Xu, Qiang
AU - Feng, Beibei
AU - Shao, Can
AU - Wang, Zhandong
AU - Sarathy, Mani
N1 - KAUST Repository Item: Exported on 2023-05-23
Acknowledged KAUST grant number(s): OSR-2019-CRG7-4077
Acknowledgements: This work was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research under the award number OSR-2019-CRG7-4077, by Key Collaborative Research Program of the Alliance of International Science Organization (grant no. ANSO-CR-KP-2022-04), by the National Natural Science Foundation of China (51976208 and U1932147) and by Hefei Science Center, CAS (2020HSC-KPRD001 and 2021HSC-UE005).
PY - 2023/5/10
Y1 - 2023/5/10
N2 - Low-temperature (low-T) oxidation experiments of n-heptane –with and without NO addition– were experimentally and numerically investigated at stoichiometric conditions in a jet-stirred reactor. Experiments were performed at atmospheric pressure over a temperature range of 500–800 K. Reactants, intermediates, and products, were measured using synchrotron vacuum ultraviolet photoionization mass spectrometry. A detailed kinetic model was developed to gain insight into the chemical effect of NO on low-T oxidation chemistry of n-heptane. Taking 650 K as the transition temperature, the results revealed that NO addition exhibited an inhibiting effect on fuel reactivity below 650 K and a promoting effect above 650 K. The reactions of ROO + NO = RO + NO2 and HO2 + NO = OH + NO2 at different temperature regions were responsible for the inhibition and promotion effects, respectively. Evidence gathered from both experimental measurements and kinetic model predictions indicated that NO addition had a significant inhibitory effect on the formation of cool flame species during the low-T oxidation process. NO suppressed low-T oxidation via the reaction of ROO + NO = RO + NO2, which impeded the subsequent isomerization, O2 addition, OH-, and HO2-elimination reaction, and influenced product distribution of the cool flame species. The experimental observations provided detailed information about these reactive intermediates, which offered new insights into low-T oxidation phenomena and clarified the importance of NO reactions which prevent the formation of cool flame products during low-T oxidation.
AB - Low-temperature (low-T) oxidation experiments of n-heptane –with and without NO addition– were experimentally and numerically investigated at stoichiometric conditions in a jet-stirred reactor. Experiments were performed at atmospheric pressure over a temperature range of 500–800 K. Reactants, intermediates, and products, were measured using synchrotron vacuum ultraviolet photoionization mass spectrometry. A detailed kinetic model was developed to gain insight into the chemical effect of NO on low-T oxidation chemistry of n-heptane. Taking 650 K as the transition temperature, the results revealed that NO addition exhibited an inhibiting effect on fuel reactivity below 650 K and a promoting effect above 650 K. The reactions of ROO + NO = RO + NO2 and HO2 + NO = OH + NO2 at different temperature regions were responsible for the inhibition and promotion effects, respectively. Evidence gathered from both experimental measurements and kinetic model predictions indicated that NO addition had a significant inhibitory effect on the formation of cool flame species during the low-T oxidation process. NO suppressed low-T oxidation via the reaction of ROO + NO = RO + NO2, which impeded the subsequent isomerization, O2 addition, OH-, and HO2-elimination reaction, and influenced product distribution of the cool flame species. The experimental observations provided detailed information about these reactive intermediates, which offered new insights into low-T oxidation phenomena and clarified the importance of NO reactions which prevent the formation of cool flame products during low-T oxidation.
UR - http://hdl.handle.net/10754/691907
UR - https://linkinghub.elsevier.com/retrieve/pii/S0010218023002055
UR - http://www.scopus.com/inward/record.url?scp=85158916662&partnerID=8YFLogxK
U2 - 10.1016/j.combustflame.2023.112824
DO - 10.1016/j.combustflame.2023.112824
M3 - Article
SN - 1556-2921
VL - 253
SP - 112824
JO - Combustion and Flame
JF - Combustion and Flame
ER -