Implantable 3D Printed Drug Delivery System

Khalil Moussi, Abdullah BuKhamsin, Jürgen Kosel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

A miniaturized drug delivery system suitable for in-vivo biomedical applications is presented. The system consists of an electrolytic pump driving a micro bellows membrane as an actuator for delivery through microneedles. A two-photon polymerization 3D printing technique was used to fabricate a reservoir equipped with microneedles. Analytical characterization of the flow rate through the microneedles showed an outgoing flow rate ranging from 63 μL/min to 520 μL/min for an applied pressure of 0.1 to 1 kPa. The assembled system with an overall size of 3.9 mm × 2.1 mm × 2 mm achieved delivery of 4 ± 0.5 μL within 12 seconds of actuation. A penetration test of the microneedle into a skin-like material confirms its potential for transdermal delivery.
Original languageEnglish (US)
Title of host publication2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)
PublisherIEEE
Pages2243-2246
Number of pages4
ISBN (Print)9781538681046
DOIs
StatePublished - Aug 22 2019

Fingerprint

Dive into the research topics of 'Implantable 3D Printed Drug Delivery System'. Together they form a unique fingerprint.

Cite this