TY - JOUR
T1 - Improved Mathematical Modelling of Six Phase Induction Machines Based on Fractional Calculus
AU - Shata, Ahmed M.
AU - Abdel-Khalik, Ayman S.
AU - Hamdy, Ragi A.
AU - Mostafa, Mohamed Zakaria
AU - Ahmed, Shehab
N1 - KAUST Repository Item: Exported on 2021-04-16
PY - 2021
Y1 - 2021
N2 - Multiphase induction machine modelling represents a crucial research topic for both machine control and performance evaluation purposes. Generally, multiphase induction machines are preferably modelled using the vector space decomposition technique with some assumptions to simplify the mathematical model. However, different sources of non-linearities, including low order harmonics mapped to secondary subspaces, cross-coupling saturation and iron losses result in a notable deviation from the experimentally measured waveforms. Furthermore, considering full symmetry amongst motors phases seems to be a rather idealistic assumption. Fractional order modelling has recently emerged as a promising mathematical technique to model highly nonlinear electrical and mechanical systems. This paper proposes an improved vector space decomposition (VSD)-based fractional order model of an asymmetrical six-phase induction machine under both healthy and open phase fault conditions with different neutral arrangements. The appropriate differentiation orders have been obtained by optimizing the error function between simulated and experimental waveforms. The results are compared with the conventional integral order-based model. Experimental validation has been carried out using a 1.5Hp prototype induction machine.
AB - Multiphase induction machine modelling represents a crucial research topic for both machine control and performance evaluation purposes. Generally, multiphase induction machines are preferably modelled using the vector space decomposition technique with some assumptions to simplify the mathematical model. However, different sources of non-linearities, including low order harmonics mapped to secondary subspaces, cross-coupling saturation and iron losses result in a notable deviation from the experimentally measured waveforms. Furthermore, considering full symmetry amongst motors phases seems to be a rather idealistic assumption. Fractional order modelling has recently emerged as a promising mathematical technique to model highly nonlinear electrical and mechanical systems. This paper proposes an improved vector space decomposition (VSD)-based fractional order model of an asymmetrical six-phase induction machine under both healthy and open phase fault conditions with different neutral arrangements. The appropriate differentiation orders have been obtained by optimizing the error function between simulated and experimental waveforms. The results are compared with the conventional integral order-based model. Experimental validation has been carried out using a 1.5Hp prototype induction machine.
UR - http://hdl.handle.net/10754/668782
UR - https://ieeexplore.ieee.org/document/9391722/
UR - http://www.scopus.com/inward/record.url?scp=85103794453&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2021.3069963
DO - 10.1109/ACCESS.2021.3069963
M3 - Article
SN - 2169-3536
VL - 9
SP - 53146
EP - 53155
JO - IEEE Access
JF - IEEE Access
ER -