TY - JOUR
T1 - Improved Photocatalytic H2 Evolution over G-Carbon Nitride with Enhanced In-Plane Ordering
AU - Zhao, Guixia
AU - Liu, Guigao
AU - Pang, Hong
AU - Liu, Huimin
AU - Zhang, Huabin
AU - Chang, Kun
AU - Meng, Xianguang
AU - Wang, Xiaojun
AU - Ye, Jinhua
N1 - Generated from Scopus record by KAUST IRTS on 2022-09-15
PY - 2016/11/23
Y1 - 2016/11/23
N2 - A series of rod-like porous graphitic-carbon nitrides (short as CNs) with enhanced in-plane ordering have been fabricated through self-assembled heptazine hydrate precursors for the first time. By controlling the calcination of the preformed precursors with different temperature-rising rates, the resulted CNs (SAHEP-CNs-1) with the most ordered and least stacked graphitic planar are showing a tremendously improved hydrogen evolution rate of 420 μmol h−1 under visible light and a remarkable apparent quantum efficiency of 8.9% at 420 nm, which is among the highest values for C3N4-related photocatalysts in the literature. This work discloses that enhancing in-plane ordering is one critical factor for improving the photocatalytic H2 evolution of carbon nitride, which is an effective solution to prolong the lifetime of charge carriers by accelerating the charge transport and separation within the graphitic planar. This finding would present a facial strategy for the designing of efficient organic semiconductors for photocatalysis.
AB - A series of rod-like porous graphitic-carbon nitrides (short as CNs) with enhanced in-plane ordering have been fabricated through self-assembled heptazine hydrate precursors for the first time. By controlling the calcination of the preformed precursors with different temperature-rising rates, the resulted CNs (SAHEP-CNs-1) with the most ordered and least stacked graphitic planar are showing a tremendously improved hydrogen evolution rate of 420 μmol h−1 under visible light and a remarkable apparent quantum efficiency of 8.9% at 420 nm, which is among the highest values for C3N4-related photocatalysts in the literature. This work discloses that enhancing in-plane ordering is one critical factor for improving the photocatalytic H2 evolution of carbon nitride, which is an effective solution to prolong the lifetime of charge carriers by accelerating the charge transport and separation within the graphitic planar. This finding would present a facial strategy for the designing of efficient organic semiconductors for photocatalysis.
UR - https://onlinelibrary.wiley.com/doi/10.1002/smll.201602136
UR - http://www.scopus.com/inward/record.url?scp=84988851394&partnerID=8YFLogxK
U2 - 10.1002/smll.201602136
DO - 10.1002/smll.201602136
M3 - Article
SN - 1613-6829
VL - 12
SP - 6160
EP - 6166
JO - Small
JF - Small
IS - 44
ER -