TY - JOUR
T1 - Improved Processability and Efficiency of Colloidal Quantum Dot Solar Cells Based on Organic Hole Transport Layers
AU - Aqoma, Havid
AU - Mubarok, Muhibullah Al
AU - Lee, Wooseop
AU - Hadmojo, Wisnu Tantyo
AU - Park, Cheolwoo
AU - Ahn, Tae Kyu
AU - Ryu, Du Yeol
AU - Jang, Sung Yeon
N1 - Funding Information:
The authors gratefully acknowledge support from the National Research Foundation (NRF) Grant funded by the Korean Government (MSIP, Grant Nos. 2016R1A5A1012966, 2017M2A2A6A01020854, and 2017R1A2B2009178) and Global Scholarship Program for Foreign Graduate Students at Kookmin University in Korea.
Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/8/16
Y1 - 2018/8/16
N2 - High-efficiency solid-state-ligand-exchange (SSE) step-free colloidal quantum dot photovoltaic (CQDPV) devices are developed by employing CQD ink based active layers and organic (Polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) and poly(3-hexylthiophene) (P3HT)) based hole transport layers (HTLs). The device using PTB7 as an HTL exhibits superior performance to that using the current leading organic HTL, P3HT, because of favorable energy levels, higher hole mobility, and facilitated interfacial charge transfer. The PTB7 based device achieves power conversion efficiency (PCE) of 9.60%, which is the highest among reported CQDPVs using organic HTLs. This result is also comparable to the PCE of an optimized device based on a thiol-exchanged p-type CQD, the current-state-of-the-art HTL. From the viewpoint of device processing, the fabrication of CQDPVs is achieved by direct single-coating of CQD active layers and organic HTLs at low temperature without SSE steps. The experimental results and device simulation results in this work suggest that further engineering of organic HTL materials can open new doors to improve the performance and processing of CQDPVs.
AB - High-efficiency solid-state-ligand-exchange (SSE) step-free colloidal quantum dot photovoltaic (CQDPV) devices are developed by employing CQD ink based active layers and organic (Polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) and poly(3-hexylthiophene) (P3HT)) based hole transport layers (HTLs). The device using PTB7 as an HTL exhibits superior performance to that using the current leading organic HTL, P3HT, because of favorable energy levels, higher hole mobility, and facilitated interfacial charge transfer. The PTB7 based device achieves power conversion efficiency (PCE) of 9.60%, which is the highest among reported CQDPVs using organic HTLs. This result is also comparable to the PCE of an optimized device based on a thiol-exchanged p-type CQD, the current-state-of-the-art HTL. From the viewpoint of device processing, the fabrication of CQDPVs is achieved by direct single-coating of CQD active layers and organic HTLs at low temperature without SSE steps. The experimental results and device simulation results in this work suggest that further engineering of organic HTL materials can open new doors to improve the performance and processing of CQDPVs.
KW - charge extraction
KW - colloidal quantum dots
KW - hole transport layer
KW - solar cells
KW - solid state ligand exchange
UR - http://www.scopus.com/inward/record.url?scp=85047778715&partnerID=8YFLogxK
U2 - 10.1002/aenm.201800572
DO - 10.1002/aenm.201800572
M3 - Article
AN - SCOPUS:85047778715
SN - 1614-6832
VL - 8
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 23
M1 - 1800572
ER -