Improving textual network embedding with global attention via optimal transport

Liqun Chen, Guoyin Wang, Chenyang Tao, Dinghan Shen, Pengyu Cheng, Xinyuan Zhang, Wenlin Wang, Yizhe Zhang, Lawrence Carin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Constituting highly informative network embeddings is an important tool for network analysis. It encodes network topology, along with other useful side information, into low-dimensional node-based feature representations that can be exploited by statistical modeling. This work focuses on learning context-aware network embeddings augmented with text data. We reformulate the network-embedding problem, and present two novel strategies to improve over traditional attention mechanisms: (i) a content-aware sparse attention module based on optimal transport, and (ii) a high-level attention parsing module. Our approach yields naturally sparse and self-normalized relational inference. It can capture long-term interactions between sequences, thus addressing the challenges faced by existing textual network embedding schemes. Extensive experiments are conducted to demonstrate our model can consistently outperform alternative state-of-the-art methods.
Original languageEnglish (US)
Title of host publicationACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages5193-5202
Number of pages10
ISBN (Print)9781950737482
StatePublished - Jan 1 2020

Fingerprint

Dive into the research topics of 'Improving textual network embedding with global attention via optimal transport'. Together they form a unique fingerprint.

Cite this