TY - JOUR
T1 - In-line coagulation prior to UF of treated domestic wastewater - foulants removal, fouling control and phosphorus removal
AU - Zheng, Xing
AU - Plume, Stephan
AU - Ernst, Mathias
AU - Croue, Jean-Philippe
AU - Jekel, Martin R.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This study was financed by the Federal Ministry for Education (BMBF, Germany (Contract no.: 02WA1016)). The financing agencies are gratefully acknowledged. The authors appreciate Miss Katrin Noack and Mr. Christopher Gabler from the Chair of Water Quality Control (TU Berlin, Germany) for their technical support, Mr. M. Kempf and Mr. Foth from Berlin Water Company (BWB) for their assistance at the WWTP Ruhleben; and Ms. Dana Herriman from the Department of Civil and Environmental Engineering (University of Waterloo) for her editing contributions.
PY - 2012/6
Y1 - 2012/6
N2 - The present work investigated fouling control and phosphorus removal by applying in-line coagulation prior to ultrafiltration (UF) of treated domestic wastewater. Experiments were conducted in both lab- and pilot-scale under close to neutral pH condition. Lab-scale foulant removal tests showed that increasing the dosage of FeCl3, AlCl3 and polymeric aluminum chloride (PACl) can improve biopolymer removal. Specifically, PACl reduced preferentially the proteinaceous fraction of biopolymer while the other two coagulants showed no significant preference. The filterability of water samples was improved after coagulation, which is contributed to biopolymer removal and the formation of larger particles. Pilot UF experiments demonstrated that in-line coagulation improved the performance of UF to a large extent. Within 0.037-0.148mmol Me3+/L dosage range, adding more FeCl3 and AlCl3 slowed down the development of trans-membrane pressure (TMP) correspondingly, while changing PACl dosage showed little effect on the variation of TMP increase rate. Further investigations indicated that PACl related precipitates contributed to more irreversible fouling than that which the monomeric coagulants made. Fouling control is thus considered as a co-effect determined by foulant removal efficiency, fouling layer structure and the adherence of hydrolysis products/precipitates onto the membrane. With respect to phosphorus removal, dosing FeCl3 and AlCl3 achieved higher removal efficiency than using PACl. Based on lab- and pilot-scale results, dosing FeCl3 and AlCl3 at a relative dosage of over 2.5mol Me3+ per mol total phosphorus (TP) in feedwater is necessarily required to keep the TP concentration under 50μg/L in UF permeate. © 2012 Elsevier B.V.
AB - The present work investigated fouling control and phosphorus removal by applying in-line coagulation prior to ultrafiltration (UF) of treated domestic wastewater. Experiments were conducted in both lab- and pilot-scale under close to neutral pH condition. Lab-scale foulant removal tests showed that increasing the dosage of FeCl3, AlCl3 and polymeric aluminum chloride (PACl) can improve biopolymer removal. Specifically, PACl reduced preferentially the proteinaceous fraction of biopolymer while the other two coagulants showed no significant preference. The filterability of water samples was improved after coagulation, which is contributed to biopolymer removal and the formation of larger particles. Pilot UF experiments demonstrated that in-line coagulation improved the performance of UF to a large extent. Within 0.037-0.148mmol Me3+/L dosage range, adding more FeCl3 and AlCl3 slowed down the development of trans-membrane pressure (TMP) correspondingly, while changing PACl dosage showed little effect on the variation of TMP increase rate. Further investigations indicated that PACl related precipitates contributed to more irreversible fouling than that which the monomeric coagulants made. Fouling control is thus considered as a co-effect determined by foulant removal efficiency, fouling layer structure and the adherence of hydrolysis products/precipitates onto the membrane. With respect to phosphorus removal, dosing FeCl3 and AlCl3 achieved higher removal efficiency than using PACl. Based on lab- and pilot-scale results, dosing FeCl3 and AlCl3 at a relative dosage of over 2.5mol Me3+ per mol total phosphorus (TP) in feedwater is necessarily required to keep the TP concentration under 50μg/L in UF permeate. © 2012 Elsevier B.V.
UR - http://hdl.handle.net/10754/562203
UR - https://linkinghub.elsevier.com/retrieve/pii/S0376738812001676
UR - http://www.scopus.com/inward/record.url?scp=84859267583&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2012.02.051
DO - 10.1016/j.memsci.2012.02.051
M3 - Article
SN - 0376-7388
VL - 403-404
SP - 129
EP - 139
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -