TY - GEN
T1 - In-Plane Air Damping of NEMS and MEMS Resonators
AU - Alcheikh, Nouha
AU - Kosuru, Lakshmoji
AU - Kazmi, Syed
AU - Younis, Mohammad I.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We gratefully acknowledge KAUST for funding this project.
PY - 2018/12/13
Y1 - 2018/12/13
N2 - This paper presents a study of the quality factor dependence on the geometrical parameters of in-plane clamped-clamped micro- and nano-beams capacitive structures at low-to-high pressure range. We found that smaller length and larger beam thickness maximize the quality factor. To minimize squeeze film damping, the structures have been fabricated with large capacitive air gaps. Despite the high ratio of the gap/thickness, we report significant effect of the gap width on the quality factor. It is found that, for micro-beams, this effect is limited at low pressure while for nano-beams, it continues until high pressure range. The geometry and the air gap effects on the damping of beams resonators have been examined experimentally. A finite-element study of the effect of the capacitive gap for in-plane resonators of one and two-side electrodes is presented. It is found that the presence of the double electrodes for in-plane resonators can cause significant drop of the quality factor compared to the single-sided beam resonator.
AB - This paper presents a study of the quality factor dependence on the geometrical parameters of in-plane clamped-clamped micro- and nano-beams capacitive structures at low-to-high pressure range. We found that smaller length and larger beam thickness maximize the quality factor. To minimize squeeze film damping, the structures have been fabricated with large capacitive air gaps. Despite the high ratio of the gap/thickness, we report significant effect of the gap width on the quality factor. It is found that, for micro-beams, this effect is limited at low pressure while for nano-beams, it continues until high pressure range. The geometry and the air gap effects on the damping of beams resonators have been examined experimentally. A finite-element study of the effect of the capacitive gap for in-plane resonators of one and two-side electrodes is presented. It is found that the presence of the double electrodes for in-plane resonators can cause significant drop of the quality factor compared to the single-sided beam resonator.
UR - http://hdl.handle.net/10754/630708
UR - https://ieeexplore.ieee.org/document/8557020
UR - http://www.scopus.com/inward/record.url?scp=85060307680&partnerID=8YFLogxK
U2 - 10.1109/nems.2018.8557020
DO - 10.1109/nems.2018.8557020
M3 - Conference contribution
SN - 9781538652732
SP - 225
EP - 228
BT - 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -