In situ grown oxygen-vacancy-rich copper oxide nanosheets on a copper foam electrode afford the selective oxidation of alcohols to value-added chemicals

Mustafa Khan, Asima Hameed, Abdus Samad, Talifhani Mushiana, Muhammad Imran Abdullah, Asma Akhtar, Raja Shahid Ashraf, Ning Zhang, Bruno G. Pollet, Udo Schwingenschlögl, Mingming Ma

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Selective oxidation of low-molecular-weight aliphatic alcohols like methanol and ethanol into carboxylates in acid/base hybrid electrolytic cells offers reduced process operating costs for the generation of fuels and value-added chemicals, which is environmentally and economically more desirable than their full oxidation to CO2. Herein, we report the in-situ fabrication of oxygen-vacancies-rich CuO nanosheets on a copper foam (CF) via a simple ultrasonication-assisted acid-etching method. The CuO/CF monolith electrode enables efficient and selective electrooxidation of ethanol and methanol into value-added acetate and formate with ~100% selectivity. First principles calculations reveal that oxygen vacancies in CuO nanosheets efficiently regulate the surface chemistry and electronic structure, provide abundant active sites, and enhance charge transfer that facilitates the adsorption of reactant molecules on the catalyst surface. The as-prepared CuO/CF monolith electrode shows excellent stability for alcohol oxidation at current densities >200 mA·cm2 for 24 h. Moreover, the abundant oxygen vacancies significantly enhance the intrinsic indicators of the catalyst in terms of specific activity and outstanding turnover frequencies of 5.8k s−1 and 6k s−1 for acetate and formate normalized by their respective faradaic efficiencies at an applied potential of 1.82 V vs. RHE.
Original languageEnglish (US)
JournalCommunications Chemistry
Volume5
Issue number1
DOIs
StatePublished - Sep 12 2022

Fingerprint

Dive into the research topics of 'In situ grown oxygen-vacancy-rich copper oxide nanosheets on a copper foam electrode afford the selective oxidation of alcohols to value-added chemicals'. Together they form a unique fingerprint.

Cite this