TY - JOUR
T1 - Increased slow dynamics defines ligandability of BTB domains
AU - Kharchenko, Vladlena
AU - Linhares, Brian M.
AU - Borregard, Megan
AU - Czaban, Iwona
AU - Grembecka, Jolanta
AU - Jaremko, Mariusz
AU - Cierpicki, Tomasz
AU - Jaremko, Lukasz
N1 - KAUST Repository Item: Exported on 2022-11-17
Acknowledged KAUST grant number(s): OSR-CRG2018-3792, OSR-CRG2019-4088
Acknowledgements: This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-CRG2018-3792 and Award No. OSR-CRG2019-4088 (L.J.). This work was funded by the National Institute of Health (NIH) R01 grant CA207272 (T.C.) and T.C. is a Rogel Scholar. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817).
PY - 2022/11/16
Y1 - 2022/11/16
N2 - Efficient determination of protein ligandability, or the propensity to bind small-molecules, would greatly facilitate drug development for novel targets. Ligandability is currently assessed using computational methods that typically consider the static structural properties of putative binding sites or by experimental fragment screening. Here, we evaluate ligandability of conserved BTB domains from the cancer-relevant proteins LRF, KAISO, and MIZ1. Using fragment screening, we discover that MIZ1 binds multiple ligands. However, no ligands are uncovered for the structurally related KAISO or LRF. To understand the principles governing ligand-binding by BTB domains, we perform comprehensive NMR-based dynamics studies and find that only the MIZ1 BTB domain exhibits backbone µs-ms time scale motions. Interestingly, residues with elevated dynamics correspond to the binding site of fragment hits and recently defined HUWE1 interaction site. Our data argue that examining protein dynamics using NMR can contribute to identification of cryptic binding sites, and may support prediction of the ligandability of novel challenging targets.
AB - Efficient determination of protein ligandability, or the propensity to bind small-molecules, would greatly facilitate drug development for novel targets. Ligandability is currently assessed using computational methods that typically consider the static structural properties of putative binding sites or by experimental fragment screening. Here, we evaluate ligandability of conserved BTB domains from the cancer-relevant proteins LRF, KAISO, and MIZ1. Using fragment screening, we discover that MIZ1 binds multiple ligands. However, no ligands are uncovered for the structurally related KAISO or LRF. To understand the principles governing ligand-binding by BTB domains, we perform comprehensive NMR-based dynamics studies and find that only the MIZ1 BTB domain exhibits backbone µs-ms time scale motions. Interestingly, residues with elevated dynamics correspond to the binding site of fragment hits and recently defined HUWE1 interaction site. Our data argue that examining protein dynamics using NMR can contribute to identification of cryptic binding sites, and may support prediction of the ligandability of novel challenging targets.
UR - http://hdl.handle.net/10754/685778
UR - https://www.nature.com/articles/s41467-022-34599-6
U2 - 10.1038/s41467-022-34599-6
DO - 10.1038/s41467-022-34599-6
M3 - Article
C2 - 36384931
SN - 2041-1723
VL - 13
JO - Nature Communications
JF - Nature Communications
IS - 1
ER -