TY - JOUR
T1 - Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling
AU - Li, Kuang-Hui
AU - Alotaibi, Hamad S.
AU - Sun, Haiding
AU - Lin, Ronghui
AU - Guo, Wenzhe
AU - Torres-Castanedo, Carlos G.
AU - Liu, Kaikai
AU - Galan, Sergio V.
AU - Li, Xiaohang
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): BAS/1/1664-01-01
Acknowledgements: Because of competition and the resulting confidentiality, there is little information on induction-heating MOCVD reactor design available in print and on the internet. We thus appreciate the following people who have generously provided suggestions and advice: Dr. G. Tompa and the engineers at Structured Materials Industries, Dr. K. Balakrishnan at BRIDGE, Dr. J. Creighton at Sandia National Laboratories, Prof. Z. Sitar and Prof. R. Collazo at North Carolina State University, Dr. A. Paranjpe at Veeco Instruments, Mr. J. Schmitt at Nitride Solution, Dr. A. Boyd at AIXTRON, and Prof. S. Novikov at the University of Nottingham. This research was sponsored by the KAUST Baseline Fund BAS/1/1664-01-01 and Equipment Fund BAS/1/1664-01-07.
PY - 2018/2/23
Y1 - 2018/2/23
N2 - In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.
AB - In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.
UR - http://hdl.handle.net/10754/627195
UR - http://www.sciencedirect.com/science/article/pii/S0022024818300848
UR - http://www.scopus.com/inward/record.url?scp=85042683915&partnerID=8YFLogxK
U2 - 10.1016/j.jcrysgro.2018.02.031
DO - 10.1016/j.jcrysgro.2018.02.031
M3 - Article
SN - 0022-0248
VL - 488
SP - 16
EP - 22
JO - Journal of Crystal Growth
JF - Journal of Crystal Growth
ER -