Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: An experimental and statistical study

Rodrigo Serna-Guerrero, Youssef Belmabkhout, Abdelhamid Sayari*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

75 Scopus citations

Abstract

This work deals with the behavior of amine-grafted mesoporous silica (referred to as TRI-PE-MCM-41) throughout adsorption-desorption cycles in the presence of 5% CO2/N2 using various regeneration conditions in batch experiments. The criteria proposed to determine the optimum regeneration conditions are the working adsorption capacity, the rate of desorption and the change of adsorption capacity between consecutive cycles. Using a 23 factorial design of experiments, the impact on the performance of the adsorbent of different levels of temperature, pressure, and flow rate of purge gas during desorption was determined. It was found that all the parameters under study have a statistically significant influence on the working adsorption capacity, but only temperature is influential with respect to desorption rate. Regeneration using temperature swing was found to be attractive, as the highest CO2 adsorption capacity (1.95 mmol g-1) and the fastest desorption rate (9.82×10-4 mmol g-1 s-1) occurred when desorption was carried out at 150 °C. However, if vacuum is applied, regeneration can be achieved at a temperature as low as 70 °C with only a 13% penalty in terms of working adsorption capacity. It was also demonstrated that under the proper regeneration conditions, TRI-PE-MCM-41 is stable over 100 adsorption-desorption cycles.

Original languageEnglish (US)
Pages (from-to)4166-4172
Number of pages7
JournalCHEMICAL ENGINEERING SCIENCE
Volume65
Issue number14
DOIs
StatePublished - Jul 15 2010
Externally publishedYes

Keywords

  • Adsorbent regeneration
  • Aminosilane grafting
  • CO adsorption
  • Desorption rate
  • MCM-41

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: An experimental and statistical study'. Together they form a unique fingerprint.

Cite this