Abstract
In this article, we report on the use of direct plasma-enhanced chemical vapor deposited silicon nitride (SiNx) films deposited at low excitation frequency (440 kHz) on low-resistivity (1.5 Ω cm) p-type Czochralski silicon substrate surfaces with different textures, to elucidate the influence of microroughness of the substrate surface on the surface-passivating properties of thin SiNx films. Whereas flat surfaces get the best passivation from Si-rich SiNx films, the optimum passivation shifts towards stoichiometric nitride as the microroughness increases, which points to the increasing relative importance of a charge-induced field effect. When short high-temperature (firing) treatments are applied upon passivation layer deposition, the process window to yield good surface passivation broadens, although very Si-rich films tend to suffer from blistering.
Original language | English (US) |
---|---|
Article number | 063303 |
Journal | Journal of Applied Physics |
Volume | 97 |
Issue number | 6 |
DOIs | |
State | Published - 2005 |
Externally published | Yes |
ASJC Scopus subject areas
- General Physics and Astronomy