TY - JOUR
T1 - Initiation and arrest of earthquake ruptures due to elongated overstressed regions
AU - Galis, Martin
AU - Ampuero, Jean-Paul
AU - Mai, Paul Martin
AU - Kristek, Jozef
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): BAS/1/1339-01-01
Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST), grant BAS/1/1339-01-01. MG and JK acknowledge partial support by the Slovak Foundation Grant VEGA- 2/0188/15. JPA acknowledges partial funding from NAM (Nederlandse Aardolie Maatschappij) and from the French government through the UCA-JEDI Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-15-IDEX-01. We appreciate reviews by two anonymous reviewers that helped us to improve the manuscript.
PY - 2019/2/17
Y1 - 2019/2/17
N2 - SUMMARY The initiation of natural and induced earthquakes is promoted in fault areas where shear stress is close to fault strength. In many real-world situations, these overstressed fault areas (or € asperities') are very elongated; for example, in the case of a fault intersecting a reservoir subject to fluid-injection, or the stress concentration along the bottom of a seismogenic zone induced by deep fault creep. Theoretical estimates of the minimum overstressed asperity size leading to runaway rupture and of the final size of self-arrested ruptures are only available for 2-D problems and for 3-D problems with an asperity aspect ratio close to one. In this study, we determine how the nucleation of ruptures on elongated asperities, and their ensuing arrest, depends on the size and aspect ratio of the asperity and on the background stress. Based on a systematic set of 3-D dynamic rupture simulations assuming linear slip-weakening friction, we find that if the shortest asperity side is smaller than the 2-D critical length, the problem effectively reduces to a 2-D problem in which rupture nucleation and arrest are controlled by the shortest length of the asperity. Otherwise, nucleation and rupture arrest are controlled by the asperity area, with a minor exception: for asperities with shortest side slightly larger than the 2-D critical length, arrested ruptures are smaller than predicted by the asperity area. The fact that rupture arrest is dominantly controlled by area, even for elongated asperities, corroborates the finding that observed maximum magnitudes of earthquakes induced by fluid injection are consistent with the theoretical relation between the magnitude of the largest self-arrested rupture and the injected volume. In the con of induced seismicity, our simulations provide plausible scenarios that could be either favourable or challenging for traffic light systems and provide mechanical insights into the conditions leading to these situations.
AB - SUMMARY The initiation of natural and induced earthquakes is promoted in fault areas where shear stress is close to fault strength. In many real-world situations, these overstressed fault areas (or € asperities') are very elongated; for example, in the case of a fault intersecting a reservoir subject to fluid-injection, or the stress concentration along the bottom of a seismogenic zone induced by deep fault creep. Theoretical estimates of the minimum overstressed asperity size leading to runaway rupture and of the final size of self-arrested ruptures are only available for 2-D problems and for 3-D problems with an asperity aspect ratio close to one. In this study, we determine how the nucleation of ruptures on elongated asperities, and their ensuing arrest, depends on the size and aspect ratio of the asperity and on the background stress. Based on a systematic set of 3-D dynamic rupture simulations assuming linear slip-weakening friction, we find that if the shortest asperity side is smaller than the 2-D critical length, the problem effectively reduces to a 2-D problem in which rupture nucleation and arrest are controlled by the shortest length of the asperity. Otherwise, nucleation and rupture arrest are controlled by the asperity area, with a minor exception: for asperities with shortest side slightly larger than the 2-D critical length, arrested ruptures are smaller than predicted by the asperity area. The fact that rupture arrest is dominantly controlled by area, even for elongated asperities, corroborates the finding that observed maximum magnitudes of earthquakes induced by fluid injection are consistent with the theoretical relation between the magnitude of the largest self-arrested rupture and the injected volume. In the con of induced seismicity, our simulations provide plausible scenarios that could be either favourable or challenging for traffic light systems and provide mechanical insights into the conditions leading to these situations.
UR - http://hdl.handle.net/10754/652845
UR - https://academic.oup.com/gji/article/217/3/1783/5322168
UR - http://www.scopus.com/inward/record.url?scp=85064116228&partnerID=8YFLogxK
U2 - 10.1093/gji/ggz086
DO - 10.1093/gji/ggz086
M3 - Article
SN - 0956-540X
VL - 217
SP - 1783
EP - 1797
JO - Geophysical Journal International
JF - Geophysical Journal International
IS - 3
ER -