TY - JOUR
T1 - INLA goes extreme
T2 - Bayesian tail regression for the estimation of high spatio-temporal quantiles
AU - Opitz, Thomas
AU - Huser, Raphaël
AU - Bakka, Haakon
AU - Rue, Håvard
N1 - Funding Information:
Acknowledgements We thank Olivier Wintenberger for organizing the competition for the 10th International Conference on Extreme-Value Analysis. This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-CRG2017-3434. Support from the KAUST Supercomputing Laboratory and access to Shaheen II is gratefully acknowledged.
Funding Information:
We thank Olivier Wintenberger for organizing the competition for the 10th International Conference on Extreme-Value Analysis. This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-CRG2017-3434. Support from the KAUST Supercomputing Laboratory and access to Shaheen II is gratefully acknowledged.
Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2018/9/1
Y1 - 2018/9/1
N2 - This work is motivated by the challenge organized for the 10th International Conference on Extreme-Value Analysis (EVA2017) to predict daily precipitation quantiles at the 99.8 % level for each month at observed and unobserved locations. Our approach is based on a Bayesian generalized additive modeling framework that is designed to estimate complex trends in marginal extremes over space and time. First, we estimate a high non-stationary threshold using a gamma distribution for precipitation intensities that incorporates spatial and temporal random effects. Then, we use the Bernoulli and generalized Pareto (GP) distributions to model the rate and size of threshold exceedances, respectively, which we also assume to vary in space and time. The latent random effects are modeled additively using Gaussian process priors, which provide high flexibility and interpretability. We develop a penalized complexity (PC) prior specification for the tail index that shrinks the GP model towards the exponential distribution, thus preventing unrealistically heavy tails. Fast and accurate estimation of the posterior distributions is performed thanks to the integrated nested Laplace approximation (INLA). We illustrate this methodology by modeling the daily precipitation data provided by the EVA2017 challenge, which consist of observations from 40 stations in the Netherlands recorded during the period 1972–2016. Capitalizing on INLA’s fast computational capacity and powerful distributed computing resources, we conduct an extensive cross-validation study to select the model parameters that govern the smoothness of trends. Our results clearly outperform simple benchmarks and are comparable to the best-scoring approaches of the other teams.
AB - This work is motivated by the challenge organized for the 10th International Conference on Extreme-Value Analysis (EVA2017) to predict daily precipitation quantiles at the 99.8 % level for each month at observed and unobserved locations. Our approach is based on a Bayesian generalized additive modeling framework that is designed to estimate complex trends in marginal extremes over space and time. First, we estimate a high non-stationary threshold using a gamma distribution for precipitation intensities that incorporates spatial and temporal random effects. Then, we use the Bernoulli and generalized Pareto (GP) distributions to model the rate and size of threshold exceedances, respectively, which we also assume to vary in space and time. The latent random effects are modeled additively using Gaussian process priors, which provide high flexibility and interpretability. We develop a penalized complexity (PC) prior specification for the tail index that shrinks the GP model towards the exponential distribution, thus preventing unrealistically heavy tails. Fast and accurate estimation of the posterior distributions is performed thanks to the integrated nested Laplace approximation (INLA). We illustrate this methodology by modeling the daily precipitation data provided by the EVA2017 challenge, which consist of observations from 40 stations in the Netherlands recorded during the period 1972–2016. Capitalizing on INLA’s fast computational capacity and powerful distributed computing resources, we conduct an extensive cross-validation study to select the model parameters that govern the smoothness of trends. Our results clearly outperform simple benchmarks and are comparable to the best-scoring approaches of the other teams.
KW - 62E20
KW - 62M30
KW - 62P12
KW - Bayesian hierarchical modeling
KW - Extreme-Value Analysis Conference challenge
KW - Extreme-Value Theory
KW - Generalized Pareto distribution
KW - High quantile estimation
KW - Integrated nested Laplace approximation (INLA)
UR - http://www.scopus.com/inward/record.url?scp=85047398862&partnerID=8YFLogxK
U2 - 10.1007/s10687-018-0324-x
DO - 10.1007/s10687-018-0324-x
M3 - Article
AN - SCOPUS:85047398862
SN - 1386-1999
VL - 21
SP - 441
EP - 462
JO - Extremes
JF - Extremes
IS - 3
ER -