TY - JOUR
T1 - Intelligent Control on Urban Natural Gas Supply Using a Deep-Learning-Assisted Pipeline Dispatch Technique
AU - Zhang, Tao
AU - Bai, Hua
AU - Sun, Shuyu
N1 - KAUST Repository Item: Exported on 2022-02-07
Acknowledged KAUST grant number(s): BAS/1/1351-01-01
Acknowledgements: This work was supported by funding from King Abdullah University of Science and Technology (KAUST) through the grants BAS/1/1351-01-01.
PY - 2022
Y1 - 2022
N2 - Natural gas has been attracting increasing attentions all around the world as a relatively cleaner energy resource compared with coal and crude oil. Except for the direct consumption as fuel, electricity generation is now another environmentally-friendly utilization of natural gas, which makes it more favorable as the energy supply for urban areas. Pipeline transportation is the main approach connecting the natural gas production field and urban areas thanks to the safety and economic reasons. In this paper, an intelligent pipeline dispatch technique is proposed using deep learning methods to predict the change of energy supply to the urban areas as a consequence of compressor operations. Practical operation data is collected and prepared for the training and validation of deep learning models, and the accelerated predictions can help make controlling plans regarding compressor operations to meet the requirement in urban natural gas supply. The proposed deep neutral network is equipped with self-adaptability, which enables the general adaption on various temporal compressor conditions including failure and maintenance.
AB - Natural gas has been attracting increasing attentions all around the world as a relatively cleaner energy resource compared with coal and crude oil. Except for the direct consumption as fuel, electricity generation is now another environmentally-friendly utilization of natural gas, which makes it more favorable as the energy supply for urban areas. Pipeline transportation is the main approach connecting the natural gas production field and urban areas thanks to the safety and economic reasons. In this paper, an intelligent pipeline dispatch technique is proposed using deep learning methods to predict the change of energy supply to the urban areas as a consequence of compressor operations. Practical operation data is collected and prepared for the training and validation of deep learning models, and the accelerated predictions can help make controlling plans regarding compressor operations to meet the requirement in urban natural gas supply. The proposed deep neutral network is equipped with self-adaptability, which enables the general adaption on various temporal compressor conditions including failure and maintenance.
UR - http://hdl.handle.net/10754/675371
UR - https://www.frontiersin.org/articles/10.3389/fenrg.2021.759498/full
U2 - 10.3389/fenrg.2021.759498
DO - 10.3389/fenrg.2021.759498
M3 - Article
SN - 2296-598X
VL - 9
JO - Frontiers in Energy Research
JF - Frontiers in Energy Research
ER -