@article{83678635bea9470981861ae025f61ffd,
title = "Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life",
abstract = "Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pulverization during cycling. We achieved the high initial discharge capacity of 2725 mAh g-1 with less than 8% capacity degradation every hundred cycles for 700 total cycles. Si hollow sphere electrodes also show a Coulombic efficiency of 99.5% in later cycles. Superior rate capability is demonstrated and attributed to fast lithium diffusion in the interconnected Si hollow structure. {\textcopyright} 2011 American Chemical Society.",
author = "Yan Yao and McDowell, {Matthew T.} and Ill Ryu and Hui Wu and Nian Liu and Liangbing Hu and Nix, {William D.} and Yi Cui",
note = "KAUST Repository Item: Exported on 2020-10-01 Acknowledged KAUST grant number(s): KUS-l1-001-12 Acknowledgements: This work was partially supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract NO. 6951379 under the Batteries for Advanced Transportation Technologies (BATT) Program. This work is also partially supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract DE-AC02-76SF0051, through the SLAC National Accelerator Laboratory LDRD project. Y.C. acknowledges support from the King Abdullah University of Science and Technology (KAUST) Investigator Award (No. KUS-l1-001-12). W.D.N and I.R. were supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-FG02-04ER46163. M.T.M. gratefully acknowledges support from the Chevron Stanford Graduate Fellowship, the National Defense Science and Engineering Graduate Fellowship, and the National Science Foundation Graduate Fellowship. This publication acknowledges KAUST support, but has no KAUST affiliated authors.",
year = "2011",
month = jul,
day = "13",
doi = "10.1021/nl201470j",
language = "English (US)",
volume = "11",
pages = "2949--2954",
journal = "Nano Letters",
issn = "1530-6984",
publisher = "American Chemical Society",
number = "7",
}