TY - JOUR
T1 - Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization
AU - Park, Youngjune
AU - Decatur, John
AU - Lin, Kun-Yi Andrew
AU - Park, Ah-Hyung Alissa
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: This publication was based on work supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). We are also grateful to Dr Luis Avila, Ms Dolly Shin and Dr Camille Petit for their help with the ATR FT-IR measurement.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2011
Y1 - 2011
N2 - Nanoparticle organic hybrid materials (NOHMs) have been recently developed that comprise an oligomeric or polymeric canopy tethered to surface-modified nanoparticles via ionic or covalent bonds. It has already been shown that the tunable nature of the grafted polymeric canopy allows for enhanced CO 2 capture capacity and selectivity via the enthalpic intermolecular interactions between CO2 and the task-specific functional groups, such as amines. Interestingly, for the same amount of CO2 loading NOHMs have also exhibited significantly different swelling behavior compared to that of the corresponding polymers, indicating a potential structural effect during CO2 capture. If the frustrated canopy species favor spontaneous ordering due to steric and/or entropic effects, the inorganic cores of NOHMs could be organized into unusual structural arrangements. Likewise, the introduction of small gaseous molecules such as CO2 could reduce the free energy of the frustrated canopy. This entropic effect, the result of unique structural nature, could allow NOHMs to capture CO2 more effectively. In order to isolate the entropic effect, NOHMs were synthesized without the task-specific functional groups. The relationship between their structural conformation and the underlying mechanisms for the CO2 absorption behavior were investigated by employing NMR and ATR FT-IR spectroscopies. The results provide fundamental information needed for evaluating and developing novel liquid-like CO2 capture materials and give useful insights for designing and synthesizing NOHMs for more effective CO2 capture. © the Owner Societies 2011.
AB - Nanoparticle organic hybrid materials (NOHMs) have been recently developed that comprise an oligomeric or polymeric canopy tethered to surface-modified nanoparticles via ionic or covalent bonds. It has already been shown that the tunable nature of the grafted polymeric canopy allows for enhanced CO 2 capture capacity and selectivity via the enthalpic intermolecular interactions between CO2 and the task-specific functional groups, such as amines. Interestingly, for the same amount of CO2 loading NOHMs have also exhibited significantly different swelling behavior compared to that of the corresponding polymers, indicating a potential structural effect during CO2 capture. If the frustrated canopy species favor spontaneous ordering due to steric and/or entropic effects, the inorganic cores of NOHMs could be organized into unusual structural arrangements. Likewise, the introduction of small gaseous molecules such as CO2 could reduce the free energy of the frustrated canopy. This entropic effect, the result of unique structural nature, could allow NOHMs to capture CO2 more effectively. In order to isolate the entropic effect, NOHMs were synthesized without the task-specific functional groups. The relationship between their structural conformation and the underlying mechanisms for the CO2 absorption behavior were investigated by employing NMR and ATR FT-IR spectroscopies. The results provide fundamental information needed for evaluating and developing novel liquid-like CO2 capture materials and give useful insights for designing and synthesizing NOHMs for more effective CO2 capture. © the Owner Societies 2011.
UR - http://hdl.handle.net/10754/598667
UR - http://xlink.rsc.org/?DOI=c1cp22631b
UR - http://www.scopus.com/inward/record.url?scp=80053508342&partnerID=8YFLogxK
U2 - 10.1039/c1cp22631b
DO - 10.1039/c1cp22631b
M3 - Article
C2 - 21915411
SN - 1463-9076
VL - 13
SP - 18115
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 40
ER -