Abstract
Contact tracing promises to help fight the spread of COVID-19 via an early detection of possible contagion events. To this end, most existing solutions share the following architecture: smartphones continuously broadcast random beacons that are intercepted by nearby devices and stored into their local contact logs. In this article, we propose an IoT-enabled architecture for contact tracing that relaxes the smartphone-centric assumption, and provides a solution that enjoys the following features: it reduces the overhead on the end user to the bare minimum - the mobile device only broadcasts its beacons; it provides the user with a degree of privacy not achieved by competing solutions - even in the most privacy adverse scenario, the solution provides k-anonymity; and it is flexible: the same architecture can be configured to support several models - ranging from fully decentralized to fully centralized ones - and the system parameters can be tuned to support the tracing of several social interaction models. What is more, our proposal can also be adopted to tackle future human-proximity transmissible diseases. Finally, we also highlight open issues and discuss a number of future research directions at the intersection of IoT and contact tracing.
Original language | English (US) |
---|---|
Article number | 9475175 |
Pages (from-to) | 82-88 |
Number of pages | 7 |
Journal | IEEE Communications Magazine |
Volume | 59 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2021 |
ASJC Scopus subject areas
- Computer Science Applications
- Computer Networks and Communications
- Electrical and Electronic Engineering