Knock Prediction Using a Simple Model for Ignition Delay

Gautam Kalghatgi, Kai Morganti, Ibrahim Algunaibet, Mani Sarathy, Robert W. Dibble

Research output: Chapter in Book/Report/Conference proceedingConference contribution

32 Scopus citations

Abstract

An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach is confirmed in this paper in a different engine using five different fuels of differing RON, sensitivity, and composition - including ethanol blends. An Arrhenius type equation with a pressure correction for ignition delay can be found from interpolation of previously published data for any gasoline if its RON and sensitivity are known. Then, if the pressure and temperature in the unburned gas can be estimated or measured, the Livengood-Wu integral can be estimated as a function of crank angle to predict the occurrence of knock. Experiments in a single cylinder DISI engine over a wide operating range confirm that this simple approach can predict knock very accurately. The data presented should enable engineers to study knock or other auto-ignition phenomena e.g. in premixed compression ignition (PCI) engines without explicit chemical kinetic calculations. © Copyright 2016 SAE International.
Original languageEnglish (US)
Title of host publicationSAE Technical Paper Series
PublisherSAE International
DOIs
StatePublished - Apr 5 2016

Fingerprint

Dive into the research topics of 'Knock Prediction Using a Simple Model for Ignition Delay'. Together they form a unique fingerprint.

Cite this