TY - JOUR
T1 - Lactate measurement by neurochemical profiling in the dorsolateral prefrontal cortex at 7T: accuracy, precision, and relaxation times
AU - Dehghani, Masoumeh
AU - Do, Kim Q.
AU - Magistretti, Pierre J.
AU - Xin, Lijing
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We are grateful to Dr. Hikari Yoshihara for proofread-ing this manuscript and Prof. Rolf Gruetter for his kind support. This study was supported by Centre d’Imagerie BioMédicale (CIBM) of the UNIL, UNIGE, HUG, CHUV, EPFL, the Leenaards and Jeantet Foundations, the National Center of Competence in Research (NCCR) “SYNAPSY-The Synaptic Bases of Mental Diseases” financed by the Swiss National Science Foundation (51AU40_125759) and the Biaggi Foundation.
PY - 2019/11/14
Y1 - 2019/11/14
N2 - Purpose: This assesses the potential of measuring lactate in the human brain using three non-editing MRS methods at 7T and compares the accuracy and precision of the methods. Methods: 1H MRS data were measured in the right dorsolateral prefrontal cortex using a semi-adiabatic spin-echo full-intensity acquired localized sequence with three different protocols: (I) TE = 16 ms, (II) TE = 110 ms, and (III) TE = 16 ms, TI = 300 ms. T1 and T2 relaxation times of lactate were also measured. Simulated spectra were generated for three protocols with known concentrations, using a range of spectral linewidths and SNRs to assess the effect of data quality on the measurement precision and accuracy. Results: Lactate was quantified in all three protocols with mean Cramér-Rao lower bound of 8% (I), 13% (II), and 7% (III). The T1 and T2 relaxation times of lactate were 1.9 ± 0.2 s and 94 ± 13 ms, respectively. Simulations predicted a spectral linewidth-associated underestimation of lactate measurement. Simulations, phantom and in vivo results showed that protocol II was most affected by this underestimation. In addition, the estimation error was insensitive to a broad range of spectral linewidth with protocol I. Within-session coefficient of variances of lactate were 6.1 ± 7.9% (I), 22.3 ± 12.3% (II), and 5.1 ± 5.4% (III), respectively. Conclusion: We conclude that protocols I and III have the potential to measure lactate at 7T with good reproducibility, whereas the measurement accuracy and precision depend on spectral linewidth and SNR, respectively. Moreover, simulation is valuable for the optimization of measurement protocols in future study design and the correction for measurement bias.
AB - Purpose: This assesses the potential of measuring lactate in the human brain using three non-editing MRS methods at 7T and compares the accuracy and precision of the methods. Methods: 1H MRS data were measured in the right dorsolateral prefrontal cortex using a semi-adiabatic spin-echo full-intensity acquired localized sequence with three different protocols: (I) TE = 16 ms, (II) TE = 110 ms, and (III) TE = 16 ms, TI = 300 ms. T1 and T2 relaxation times of lactate were also measured. Simulated spectra were generated for three protocols with known concentrations, using a range of spectral linewidths and SNRs to assess the effect of data quality on the measurement precision and accuracy. Results: Lactate was quantified in all three protocols with mean Cramér-Rao lower bound of 8% (I), 13% (II), and 7% (III). The T1 and T2 relaxation times of lactate were 1.9 ± 0.2 s and 94 ± 13 ms, respectively. Simulations predicted a spectral linewidth-associated underestimation of lactate measurement. Simulations, phantom and in vivo results showed that protocol II was most affected by this underestimation. In addition, the estimation error was insensitive to a broad range of spectral linewidth with protocol I. Within-session coefficient of variances of lactate were 6.1 ± 7.9% (I), 22.3 ± 12.3% (II), and 5.1 ± 5.4% (III), respectively. Conclusion: We conclude that protocols I and III have the potential to measure lactate at 7T with good reproducibility, whereas the measurement accuracy and precision depend on spectral linewidth and SNR, respectively. Moreover, simulation is valuable for the optimization of measurement protocols in future study design and the correction for measurement bias.
UR - http://hdl.handle.net/10754/660452
UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.28066
UR - http://www.scopus.com/inward/record.url?scp=85075138711&partnerID=8YFLogxK
U2 - 10.1002/mrm.28066
DO - 10.1002/mrm.28066
M3 - Article
C2 - 31729080
SN - 0740-3194
JO - Magnetic Resonance in Medicine
JF - Magnetic Resonance in Medicine
ER -