Laminar Burning Velocities of Formic Acid and Formic Acid/Hydrogen Flames: An Experimental and Modeling Study

K.N. Osipova, Mani Sarathy, Oleg P. Korobeinichev, A.G. Shmakov

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Laminar flame speed of formic acid and formic acid/hydrogen (4/1) flames was studied both experimentally and numerically. Experiments with flames of pure formic acid were performed at temperatures of 373 and 423 K, while for formic acid/hydrogen flames the temperature value was 368 K. All of the experiments were performed under atmospheric pressure and at an equivalence ratio ranging from 0.5 to 1.5. To measure the laminar flame speed, the heat flux balance technique was applied. Three detailed chemical-kinetic mechanisms were tested on experimental data. Experiments showed that addition of 20% of hydrogen increases the laminar burning velocity of formic acid, for example, at around 1.5 for stoichiometric flames. The comparison of experimental and numerical data showed that all models tend to overestimate laminar burning velocities of studied flames, especially in the case of rich flames. The obtained results indicate that further improvement of existing chemical-kinetic models of formic acid oxidation is highly required.
Original languageEnglish (US)
JournalEnergy & Fuels
DOIs
StatePublished - Jan 5 2021

Fingerprint

Dive into the research topics of 'Laminar Burning Velocities of Formic Acid and Formic Acid/Hydrogen Flames: An Experimental and Modeling Study'. Together they form a unique fingerprint.

Cite this