TY - GEN
T1 - Large-Capacity and Flexible Video Steganography via Invertible Neural Network
AU - Mou, Chong
AU - Xu, Youmin
AU - Song, Jiechong
AU - Zhao, Chen
AU - Ghanem, Bernard
AU - Zhang, Jian
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Video steganography is the art of unobtrusively concealing secret data in a cover video and then recovering the secret data through a decoding protocol at the receiver end. Although several attempts have been made, most of them are limited to low-capacity and fixed steganography. To rectify these weaknesses, we propose a Large-capacity and Flexible Video Steganography Network (LF-VSN) in this paper. For large-capacity, we present a reversible pipeline to perform multiple videos hiding and recovering through a single invertible neural network (INN). Our method can hide/recover 7 secret videos in/from 1 cover video with promising performance. For flexibility, we propose a key-controllable scheme, enabling different receivers to recover particular secret videos from the same cover video through specific keys. Moreover, we further improve the flexibility by proposing a scalable strategy in multiple videos hiding, which can hide variable numbers of secret videos in a cover video with a single model and a single training session. Extensive experiments demonstrate that with the significant improvement of the video steganography performance, our proposed LF-VSN has high security, large hiding capacity, and flexibility. The source code is available at https://github.com/MC-E/LF-VSN.
AB - Video steganography is the art of unobtrusively concealing secret data in a cover video and then recovering the secret data through a decoding protocol at the receiver end. Although several attempts have been made, most of them are limited to low-capacity and fixed steganography. To rectify these weaknesses, we propose a Large-capacity and Flexible Video Steganography Network (LF-VSN) in this paper. For large-capacity, we present a reversible pipeline to perform multiple videos hiding and recovering through a single invertible neural network (INN). Our method can hide/recover 7 secret videos in/from 1 cover video with promising performance. For flexibility, we propose a key-controllable scheme, enabling different receivers to recover particular secret videos from the same cover video through specific keys. Moreover, we further improve the flexibility by proposing a scalable strategy in multiple videos hiding, which can hide variable numbers of secret videos in a cover video with a single model and a single training session. Extensive experiments demonstrate that with the significant improvement of the video steganography performance, our proposed LF-VSN has high security, large hiding capacity, and flexibility. The source code is available at https://github.com/MC-E/LF-VSN.
KW - Image and video synthesis and generation
UR - http://www.scopus.com/inward/record.url?scp=85173813565&partnerID=8YFLogxK
U2 - 10.1109/CVPR52729.2023.02165
DO - 10.1109/CVPR52729.2023.02165
M3 - Conference contribution
AN - SCOPUS:85173813565
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 22606
EP - 22615
BT - Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PB - IEEE Computer Society
T2 - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Y2 - 18 June 2023 through 22 June 2023
ER -