TY - JOUR
T1 - Large-eddy simulation of flow over a rotating cylinder: the lift crisis at ReD=6×10^4
AU - Cheng, W.
AU - Pullin, D. I.
AU - Samtaney, Ravi
N1 - KAUST Repository Item: Exported on 2020-04-23
Acknowledgements: This work was partially supported by the KAUST baseline research funds of R.S. The Cray XC40, Shaheen, at KAUST was utilized for all the reported LES.
PY - 2018/9/19
Y1 - 2018/9/19
N2 - We present wall-resolved large-eddy simulation (LES) of flow with free-stream velocity U∞ over a cylinder of diameter D rotating at constant angular velocity Ω , with the focus on the lift crisis, which takes place at relatively high Reynolds number ReD=U∞D/ν , where ν is the kinematic viscosity of the fluid. Two sets of LES are performed within the ( ReD , α )-plane with α=ΩD/(2U∞) the dimensionless cylinder rotation speed. One set, at ReD=5000 , is used as a reference flow and does not exhibit a lift crisis. Our main LES varies α in 0⩽α⩽2.0 at fixed ReD=6×104 . For α in the range α=0.48−0.6 we find a lift crisis. This range is in agreement with experiment although the LES shows a deeper local minimum in the lift coefficient than the measured value. Diagnostics that include instantaneous surface portraits of the surface skin-friction vector field Cf , spanwise-averaged flow-streamline plots, and a statistical analysis of local, near-surface flow reversal show that, on the leeward-bottom cylinder surface, the flow experiences large-scale reorganization as α increases through the lift crisis. At α=0.48 the primary-flow features comprise a shear layer separating from that side of the cylinder that moves with the free stream and a pattern of oscillatory but largely attached flow zones surrounded by scattered patches of local flow separation/reattachment on the lee and underside of the cylinder surface. Large-scale, unsteady vortex shedding is observed. At α=0.6 the flow has transitioned to a more ordered state where the small-scale separation/reattachment cells concentrate into a relatively narrow zone with largely attached flow elsewhere. This induces a low-pressure region which produces a sudden decrease in lift and hence the lift crisis. Through this process, the boundary layer does not show classical turbulence behaviour. As α is further increased at constant ReD , the localized separation zone dissipates with corresponding attached flow on most of the cylinder surface. The lift coefficient then resumes its increasing trend. A logarithmic region is found within the boundary layer at α=1.0 .
AB - We present wall-resolved large-eddy simulation (LES) of flow with free-stream velocity U∞ over a cylinder of diameter D rotating at constant angular velocity Ω , with the focus on the lift crisis, which takes place at relatively high Reynolds number ReD=U∞D/ν , where ν is the kinematic viscosity of the fluid. Two sets of LES are performed within the ( ReD , α )-plane with α=ΩD/(2U∞) the dimensionless cylinder rotation speed. One set, at ReD=5000 , is used as a reference flow and does not exhibit a lift crisis. Our main LES varies α in 0⩽α⩽2.0 at fixed ReD=6×104 . For α in the range α=0.48−0.6 we find a lift crisis. This range is in agreement with experiment although the LES shows a deeper local minimum in the lift coefficient than the measured value. Diagnostics that include instantaneous surface portraits of the surface skin-friction vector field Cf , spanwise-averaged flow-streamline plots, and a statistical analysis of local, near-surface flow reversal show that, on the leeward-bottom cylinder surface, the flow experiences large-scale reorganization as α increases through the lift crisis. At α=0.48 the primary-flow features comprise a shear layer separating from that side of the cylinder that moves with the free stream and a pattern of oscillatory but largely attached flow zones surrounded by scattered patches of local flow separation/reattachment on the lee and underside of the cylinder surface. Large-scale, unsteady vortex shedding is observed. At α=0.6 the flow has transitioned to a more ordered state where the small-scale separation/reattachment cells concentrate into a relatively narrow zone with largely attached flow elsewhere. This induces a low-pressure region which produces a sudden decrease in lift and hence the lift crisis. Through this process, the boundary layer does not show classical turbulence behaviour. As α is further increased at constant ReD , the localized separation zone dissipates with corresponding attached flow on most of the cylinder surface. The lift coefficient then resumes its increasing trend. A logarithmic region is found within the boundary layer at α=1.0 .
UR - http://hdl.handle.net/10754/630544
UR - https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/largeeddy-simulation-of-flow-over-a-rotating-cylinder-the-lift-crisis-at-red6times-104/E5D57563DB29E788464DC29A2F3597AB
UR - http://www.scopus.com/inward/record.url?scp=85054845132&partnerID=8YFLogxK
U2 - 10.1017/jfm.2018.644
DO - 10.1017/jfm.2018.644
M3 - Article
AN - SCOPUS:85054845132
SN - 0022-1120
VL - 855
SP - 371
EP - 407
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -