TY - GEN
T1 - Large eddy simulations of a premixed jet combustor using flamelet-generated manifolds
T2 - 55th AIAA Aerospace Sciences Meeting
AU - Pérez, Francisco E.Hernández
AU - Lee, Bok Jik
AU - Im, Hong G.
AU - Fancello, Alessio
AU - Donini, Andrea
AU - van Oijenk, Jeroen A.
AU - de Goey, L. Philip H.
N1 - Publisher Copyright:
© 2017 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
PY - 2017
Y1 - 2017
N2 - Large eddy simulations of a turbulent premixed jet flame in a confined chamber were conducted using the flamelet-generated manifold technique for chemistry tabulation. The configuration is characterized by an off-center nozzle having an inner diameter of 10 mm, supplying a lean methane-air mixture with an equivalence ratio of 0.71 and a mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the manifold via burner-stabilized flamelets and the subgrid-scale (SGS) turbulencechemistry interaction is modeled via presumed probability density functions. Comparisons between numerical results and measured data show that a considerable improvement in the prediction of temperature is achieved when heat losses are included in the manifold, as compared to the adiabatic one. Additional improvement in the temperature predictions is obtained by incorporating radiative heat losses. Moreover, further enhancements in the LES predictions are achieved by employing SGS models based on transport equations, such as the SGS turbulence kinetic energy equation with dynamic coefficients. While the numerical results display good agreement up to a distance of 4 nozzle diameters downstream of the nozzle exit, the results become less satisfactory along the downstream, suggesting that further improvements in the modeling are required, among which a more accurate model for the SGS variance of progress variable can be relevant.
AB - Large eddy simulations of a turbulent premixed jet flame in a confined chamber were conducted using the flamelet-generated manifold technique for chemistry tabulation. The configuration is characterized by an off-center nozzle having an inner diameter of 10 mm, supplying a lean methane-air mixture with an equivalence ratio of 0.71 and a mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the manifold via burner-stabilized flamelets and the subgrid-scale (SGS) turbulencechemistry interaction is modeled via presumed probability density functions. Comparisons between numerical results and measured data show that a considerable improvement in the prediction of temperature is achieved when heat losses are included in the manifold, as compared to the adiabatic one. Additional improvement in the temperature predictions is obtained by incorporating radiative heat losses. Moreover, further enhancements in the LES predictions are achieved by employing SGS models based on transport equations, such as the SGS turbulence kinetic energy equation with dynamic coefficients. While the numerical results display good agreement up to a distance of 4 nozzle diameters downstream of the nozzle exit, the results become less satisfactory along the downstream, suggesting that further improvements in the modeling are required, among which a more accurate model for the SGS variance of progress variable can be relevant.
UR - http://www.scopus.com/inward/record.url?scp=85017255487&partnerID=8YFLogxK
U2 - 10.2514/6.2017-0379
DO - 10.2514/6.2017-0379
M3 - Conference contribution
AN - SCOPUS:85017255487
T3 - AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
BT - AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc.
Y2 - 9 January 2017 through 13 January 2017
ER -