Lead-Carbon Batteries toward Future Energy Storage: From Mechanism and Materials to Applications

Jian Yin, Haibo Lin, Jun Shi, Zheqi Lin, Jinpeng Bao, Yue Wang, Xuliang Lin, Yanlin Qin, Xueqing Qiu, Wenli Zhang

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


The lead acid battery has been a dominant device in large-scale energy storage systems since its invention in 1859. It has been the most successful commercialized aqueous electrochemical energy storage system ever since. In addition, this type of battery has witnessed the emergence and development of modern electricity-powered society. Nevertheless, lead acid batteries have technologically evolved since their invention. Over the past two decades, engineers and scientists have been exploring the applications of lead acid batteries in emerging devices such as hybrid electric vehicles and renewable energy storage; these applications necessitate operation under partial state of charge. Considerable endeavors have been devoted to the development of advanced carbon-enhanced lead acid battery (i.e., lead-carbon battery) technologies. Achievements have been made in developing advanced lead-carbon negative electrodes. Additionally, there has been significant progress in developing commercially available lead-carbon battery products. Therefore, exploring a durable, long-life, corrosion-resistive lead dioxide positive electrode is of significance. In this review, the possible design strategies for advanced maintenance-free lead-carbon batteries and new rechargeable battery configurations based on lead acid battery technology are critically reviewed. Moreover, a synopsis of the lead-carbon battery is provided from the mechanism, additive manufacturing, electrode fabrication, and full cell evaluation to practical applications.
Original languageEnglish (US)
JournalElectrochemical Energy Reviews
Issue number3
StatePublished - Jul 27 2022


Dive into the research topics of 'Lead-Carbon Batteries toward Future Energy Storage: From Mechanism and Materials to Applications'. Together they form a unique fingerprint.

Cite this