Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides

Areej Aljarb, Jui-Han Fu, Chih-Chan Hsu, Chih-Piao Chuu, Yi Wan, Mariam Hakami, Dipti R. Naphade, Emre Yengel, Chien-Ju Lee, Steven Brems, Tse-An Chen, Ming-Yang Li, Sang-Hoon Bae, Wei-Ting Hsu, Zhen Cao, Rehab Albaridy, Sergei Lopatin, Wen-Hao Chang, Thomas D. Anthopoulos, Jeehwan KimLain-Jong Li, Vincent Tung

Research output: Contribution to journalArticlepeer-review

72 Scopus citations


Two-dimensional transition metal dichalcogenide nanoribbons are touted as the future extreme device downscaling for advanced logic and memory devices but remain a formidable synthetic challenge. Here, we demonstrate a ledge-directed epitaxy (LDE) of dense arrays of continuous, self-aligned, monolayer and single-crystalline MoS2 nanoribbons on β-gallium (iii) oxide (β-Ga2O3) (100) substrates. LDE MoS2 nanoribbons have spatial uniformity over a long range and transport characteristics on par with those seen in exfoliated benchmarks. Prototype MoS2-nanoribbon-based field-effect transistors exhibit high on/off ratios of 108 and an averaged room temperature electron mobility of 65 cm2 V−1 s−1. The MoS2 nanoribbons can be readily transferred to arbitrary substrates while the underlying β-Ga2O3 can be reused after mechanical exfoliation. We further demonstrate LDE as a versatile epitaxy platform for the growth of p-type WSe2 nanoribbons and lateral heterostructures made of p-WSe2 and n-MoS2 nanoribbons for futuristic electronics applications.
Original languageEnglish (US)
JournalNature Materials
StatePublished - Sep 7 2020


Dive into the research topics of 'Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides'. Together they form a unique fingerprint.

Cite this