Abstract
The application of large-eddy simulation (LES) to the prediction of H2-enriched lean methane-air turbulent premixed combustion is considered. A presumed conditional moment (PCM) subfilter-scale combustion model is coupled with the flame prolongation of intrinsic low-dimensional manifold (FPI) chemistry tabulation technique. The LES and PCM-FPI modelling procedures are then applied to the prediction of laboratory-scale axisymmetric Bunsen-type turbulent premixed flames. Both premixed methane-air and H2-enriched methane-air flames are considered and the predicted solutions are examined and compared to available experimental data. The enriched flame has 20% H2 in terms of mole fraction and lies in the methane-dominated regime. The capability of the LES model to predict the observed behaviour is examined.
Original language | English (US) |
---|---|
Title of host publication | 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013 |
State | Published - 2013 |
Externally published | Yes |
Event | 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013 - Grapevine, TX, United States Duration: Jan 7 2013 → Jan 10 2013 |
Other
Other | 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013 |
---|---|
Country/Territory | United States |
City | Grapevine, TX |
Period | 01/7/13 → 01/10/13 |
ASJC Scopus subject areas
- Space and Planetary Science
- Aerospace Engineering