TY - JOUR
T1 - Linearly Decoupled Energy-Stable Numerical Methods for Multicomponent Two-Phase Compressible Flow
AU - Kou, Jisheng
AU - Sun, Shuyu
AU - Wang, Xiuhua
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): BAS/1/1351-01, URF/1/2993-01, REP/1/2879-01
Acknowledgements: This work was supported by funding from King Abdullah University of Science and Technology (KAUST) through grants BAS/1/1351-01, URF/1/2993-01, and REP/1/2879-01.
PY - 2018/11/15
Y1 - 2018/11/15
N2 - In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multicomponent two-phase compressible flow with a realistic equation of state (e.g., Peng--Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure consistency with the mass balance equations. Moreover, we propose a componentwise SAV approach for a multicomponent fluid, which requires solving a sequence of linear, separate mass balance equations. The fully discrete schemes are also constructed based on the finite difference/volume methods with the upwind scheme on staggered grids. We prove that the semidiscrete and fully discrete schemes preserve the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.
AB - In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multicomponent two-phase compressible flow with a realistic equation of state (e.g., Peng--Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure consistency with the mass balance equations. Moreover, we propose a componentwise SAV approach for a multicomponent fluid, which requires solving a sequence of linear, separate mass balance equations. The fully discrete schemes are also constructed based on the finite difference/volume methods with the upwind scheme on staggered grids. We prove that the semidiscrete and fully discrete schemes preserve the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.
UR - http://hdl.handle.net/10754/629934
UR - https://epubs.siam.org/doi/10.1137/17M1162287
UR - http://www.scopus.com/inward/record.url?scp=85060062323&partnerID=8YFLogxK
U2 - 10.1137/17m1162287
DO - 10.1137/17m1162287
M3 - Article
SN - 0036-1429
VL - 56
SP - 3219
EP - 3248
JO - SIAM Journal on Numerical Analysis
JF - SIAM Journal on Numerical Analysis
IS - 6
ER -