Logistic stick-breaking process

Lu Ren, Lan Du, Lawrence Carin, David B. Dunson

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


A logistic stick-breaking process (LSBP) is proposed for non-parametric clustering of general spatially- or temporally-dependent data, imposing the belief that proximate data are more likely to be clustered together. The sticks in the LSBP are realized via multiple logistic regression functions, with shrinkage priors employed to favor contiguous and spatially localized segments. The LSBP is also extended for the simultaneous processing of multiple data sets, yielding a hierarchical logistic stick-breaking process (H-LSBP). The model parameters (atoms) within the H-LSBP are shared across the multiple learning tasks. Efficient variational Bayesian inference is derived, and comparisons are made to related techniques in the literature. Experimental analysis is performed for audio waveforms and images, and it is demonstrated that for segmentation applications the LSBP yields generally homogeneous segments with sharp boundaries. © 2011 Lu Ren, Lan Du, Lawrence Carin and David Dunson.
Original languageEnglish (US)
Pages (from-to)203-239
Number of pages37
JournalJournal of Machine Learning Research
StatePublished - Jan 1 2011
Externally publishedYes


Dive into the research topics of 'Logistic stick-breaking process'. Together they form a unique fingerprint.

Cite this