Look, Listen, and Attack: Backdoor Attacks Against Video Action Recognition

Hasan Abed Al Kader Hammoud*, Shuming Liu, Mohammed Alkhrashi, Fahad Albalawi, Bernard Ghanem

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Deep neural networks (DNNs) are vulnerable to a class of attacks called "backdoor attacks", which create an association between a backdoor trigger and a target label the attacker is interested in exploiting. A backdoored DNN performs well on clean test images, yet persistently predicts an attacker-defined label for any sample in the presence of the backdoor trigger. Although backdoor attacks have been extensively studied in the image domain, there are very few works that explore such attacks in the video domain, and they tend to conclude that image backdoor attacks are less effective in the video domain. In this work, we revisit the traditional backdoor threat model and incorporate additional video-related aspects to that model. We show that poisoned-label image backdoor attacks could be extended temporally in two ways, statically and dynamically, leading to highly effective attacks in the video domain. In addition, we explore natural video backdoors to highlight the seriousness of this vulnerability in the video domain. And, for the first time, we study multi-modal (audiovisual) backdoor attacks against video action recognition models, where we show that attacking a single modality is enough for achieving a high attack success rate.

Original languageEnglish (US)
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
PublisherIEEE Computer Society
Pages3439-3450
Number of pages12
ISBN (Electronic)9798350365474
DOIs
StatePublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 - Seattle, United States
Duration: Jun 16 2024Jun 22 2024

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
Country/TerritoryUnited States
CitySeattle
Period06/16/2406/22/24

Keywords

  • action recognition
  • adversarial attacks
  • backdoor
  • backdoor attacks
  • video understanding

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Look, Listen, and Attack: Backdoor Attacks Against Video Action Recognition'. Together they form a unique fingerprint.

Cite this