TY - JOUR
T1 - Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing
AU - Saidaminov, Makhsud I.
AU - Mohammed, Omar F.
AU - Bakr, Osman
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors acknowledge the support of King Abdullah University of Science and Technology (KAUST).
PY - 2017/3/30
Y1 - 2017/3/30
N2 - Low-dimensional-networked (low-DN) perovskite derivatives are bulk quantum materials in which charge carriers are localized within ordered metal halide sheets, rods, or clusters that are separated by cationic lattices. After two decades of hibernation, this class of semiconductors reemerged in the past two years, largely catalyzed by the interest in alternative, more stable absorbers to CH3NH3PbI3-type perovskites in photovoltaics. Whether low-DN perovskites will surpass other photovoltaic technologies remains to be seen, but their impressively high photo- and electroluminescence yields have already set new benchmarks in light emission applications. Here we offer our perspective on the most exciting advances in materials design of low-DN perovskites for energy- and optoelectronic-related applications. The next few years will usher in an explosive growth in this tribe of quantum materials, as only a few members have been synthesized, while the potential library of compositions and structures is believed to be much larger and is yet to be discovered.
AB - Low-dimensional-networked (low-DN) perovskite derivatives are bulk quantum materials in which charge carriers are localized within ordered metal halide sheets, rods, or clusters that are separated by cationic lattices. After two decades of hibernation, this class of semiconductors reemerged in the past two years, largely catalyzed by the interest in alternative, more stable absorbers to CH3NH3PbI3-type perovskites in photovoltaics. Whether low-DN perovskites will surpass other photovoltaic technologies remains to be seen, but their impressively high photo- and electroluminescence yields have already set new benchmarks in light emission applications. Here we offer our perspective on the most exciting advances in materials design of low-DN perovskites for energy- and optoelectronic-related applications. The next few years will usher in an explosive growth in this tribe of quantum materials, as only a few members have been synthesized, while the potential library of compositions and structures is believed to be much larger and is yet to be discovered.
UR - http://hdl.handle.net/10754/623679
UR - http://pubs.acs.org/doi/abs/10.1021/acsenergylett.6b00705
UR - http://www.scopus.com/inward/record.url?scp=85028464369&partnerID=8YFLogxK
U2 - 10.1021/acsenergylett.6b00705
DO - 10.1021/acsenergylett.6b00705
M3 - Article
SN - 2380-8195
VL - 2
SP - 889
EP - 896
JO - ACS Energy Letters
JF - ACS Energy Letters
IS - 4
ER -