TY - JOUR
T1 - Low fouling polysulfone ultrafiltration membrane via click chemistry
AU - Xie, Yihui
AU - Tayouo Djinsu, Russell
AU - Nunes, Suzana Pereira
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The work was partially funded by the KAUST Competitive Research Grant program (CRG2).
PY - 2014/10/13
Y1 - 2014/10/13
N2 - Hydrophilic surfaces are known to be less prone to fouling. Ultrafiltration membranes are frequently prepared from rather hydrophobic polymers like polysulfone (PSU). Strategies to keep the good pore forming characteristics of PSU, but with improved hydrophilicity are proposed here. PSU functionalized with 1,2,3-triazole ring substituents containing OH groups was successfully synthesized through click chemistry reaction. The structures of the polymers were confirmed using NMR spectroscopy and Fourier transform infrared spectroscopy (FTIR). High thermal stability (>280°C) was observed by thermal gravimetric analysis. Elemental analysis showed the presence of nitrogen containing triazole group with different degrees of functionalization (23%, 49%, 56%, and 94%). The glass transition temperature shifted with the introduction of triazole pendant groups from 190°C (unmodified) to 171°C. Ultrafiltration membranes were prepared via phase inversion by immersion in different coagulation baths (NMP/water mixtures with volume ratios from 0/100 to 40/60). The morphologies of these membranes were studied by field emission scanning electron microscopy (FESEM). The optimized PSU bearing triazole functions membranes exhibited water permeability up to 187 L m-2 h-1 bar-1, which is 23 times higher than those prepared under the same conditions but with unmodified polysulfone (PSU; 8 L m-2 h-1 bar-1). Results of bovine serum albumin protein rejection test indicated that susceptibility to fouling decreased with the modification, due to the increased hydrophilicity, while keeping high protein rejection ratio (>99%).
AB - Hydrophilic surfaces are known to be less prone to fouling. Ultrafiltration membranes are frequently prepared from rather hydrophobic polymers like polysulfone (PSU). Strategies to keep the good pore forming characteristics of PSU, but with improved hydrophilicity are proposed here. PSU functionalized with 1,2,3-triazole ring substituents containing OH groups was successfully synthesized through click chemistry reaction. The structures of the polymers were confirmed using NMR spectroscopy and Fourier transform infrared spectroscopy (FTIR). High thermal stability (>280°C) was observed by thermal gravimetric analysis. Elemental analysis showed the presence of nitrogen containing triazole group with different degrees of functionalization (23%, 49%, 56%, and 94%). The glass transition temperature shifted with the introduction of triazole pendant groups from 190°C (unmodified) to 171°C. Ultrafiltration membranes were prepared via phase inversion by immersion in different coagulation baths (NMP/water mixtures with volume ratios from 0/100 to 40/60). The morphologies of these membranes were studied by field emission scanning electron microscopy (FESEM). The optimized PSU bearing triazole functions membranes exhibited water permeability up to 187 L m-2 h-1 bar-1, which is 23 times higher than those prepared under the same conditions but with unmodified polysulfone (PSU; 8 L m-2 h-1 bar-1). Results of bovine serum albumin protein rejection test indicated that susceptibility to fouling decreased with the modification, due to the increased hydrophilicity, while keeping high protein rejection ratio (>99%).
UR - http://hdl.handle.net/10754/565991
UR - http://doi.wiley.com/10.1002/app.41549
UR - http://www.scopus.com/inward/record.url?scp=84924137432&partnerID=8YFLogxK
U2 - 10.1002/app.41549
DO - 10.1002/app.41549
M3 - Article
SN - 0021-8995
VL - 132
SP - n/a-n/a
JO - Journal of Applied Polymer Science
JF - Journal of Applied Polymer Science
IS - 21
ER -