Abstract
This paper presents a reduced-complexity low power error-resilient K-Best MIMO Detector. A novel tree-enumeration method is proposed such that the error-resilient detection processes a reduced search space and is more suitable for VLSI design. Moreover, a circuit-level optimization is employed to further simplify the complexity. Experimental results are given showing that the circuit-level optimization decreases the detector area by 15% and power consumption by 41%. Moreover, we show that the proposed error-resilient MIMO detector with reduced-voltage memory can achieve a total of 19% reduction in power consumption compared with the conventional scheme, while still maintaining close-to optimal PER performance. © 2014 IEEE.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - IEEE International Symposium on Circuits and Systems |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Print) | 9781479934324 |
DOIs | |
State | Published - Jan 1 2014 |
Externally published | Yes |