Low-temperature hydrogen production from methanol over a ruthenium catalyst in water

Mahendra K. Awasthi, Rohit Kumar Rai, Silke Behrens, Sanjay K. Singh

    Research output: Contribution to journalArticlepeer-review

    39 Scopus citations

    Abstract

    Traditionally, methanol reforming at a very high temperature (>200 °C) has been explored for hydrogen production. Here, we show that in situ generated ruthenium nanoparticles (ca. 1.5 nm) from an organometallic precursor promote hydrogen production from methanol in water at low temperature (90-130 °C), which leads to a practical and efficient approach for low-temperature hydrogen production from methanol in water. The reactivity of ruthenium nanoparticles is tuned to achieve a high rate of hydrogen gas production from methanol. Notably, the use of a pyridine-2-ol ligand significantly accelerated the hydrogen production rate by 80% to 49 mol H2 per mol Ru per hour at 130 °C. Moreover, the studied ruthenium catalyst exhibits appreciably long-term stability to achieve a turnover number of 762 mol H2 per mol Ru generating 186 L of H2 per gram of Ru. This journal is
    Original languageEnglish (US)
    Pages (from-to)136-142
    Number of pages7
    JournalCatalysis Science and Technology
    Volume11
    Issue number1
    DOIs
    StatePublished - Oct 26 2020

    Fingerprint

    Dive into the research topics of 'Low-temperature hydrogen production from methanol over a ruthenium catalyst in water'. Together they form a unique fingerprint.

    Cite this