TY - JOUR
T1 - Low-voltage, Dual-gate Organic Transistors with High-sensitivity and Stability towards Electrostatic Biosensing
AU - Nikolka, Mark
AU - Simatos, Dimitrios
AU - Foudeh, Amir
AU - Pfattner, Raphael
AU - McCulloch, Iain
AU - Bao, Zhenan
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: M.N. acknowledges financial support from the European Commission through a Marie-Curie Individual Fellowship (EC Grant Agreement Number: 747461). A.F. and Z.B. acknowledge support from the Stanford Catalyst Program for Collaborative Research and a seed grant from the Stanford Precision Health and Integrated Diagnosis (PHIND) program. D. S. acknowledges support by the Engineering and Physical Sciences Research Council (grant number EP/L015889/1).
PY - 2020/8/3
Y1 - 2020/8/3
N2 - High levels of performance and stability have been demonstrated for conjugated polymer thin-film transistors in recent years making them promising materials for flexible electronic circuits and displays. For sensing applica-tions, however, most research efforts have been focusing on electrochemical sensing devices. Here we demonstrate a highly stable bio-sensing platform using polymer transistors based on the dual-gate mechanism. In this architec-ture a sensing signal is transduced and amplified by the capacitive coupling between a low-k bottom-dielectric and a high-k ionic elastomer top-dielectric that is in contact with an analyte solution. The new design exhibits a high signal amplification, high stability under bias-stress in various aqueous environments and low signal drift. Our platform furthermore, while responding expectedly to charged analytes such as the protein BSA, is insensitive to changes of salt concentration of the analyte solution. These features make this platform a potentially suitable tool for a variety of biosensing applications.
AB - High levels of performance and stability have been demonstrated for conjugated polymer thin-film transistors in recent years making them promising materials for flexible electronic circuits and displays. For sensing applica-tions, however, most research efforts have been focusing on electrochemical sensing devices. Here we demonstrate a highly stable bio-sensing platform using polymer transistors based on the dual-gate mechanism. In this architec-ture a sensing signal is transduced and amplified by the capacitive coupling between a low-k bottom-dielectric and a high-k ionic elastomer top-dielectric that is in contact with an analyte solution. The new design exhibits a high signal amplification, high stability under bias-stress in various aqueous environments and low signal drift. Our platform furthermore, while responding expectedly to charged analytes such as the protein BSA, is insensitive to changes of salt concentration of the analyte solution. These features make this platform a potentially suitable tool for a variety of biosensing applications.
UR - http://hdl.handle.net/10754/664569
UR - https://pubs.acs.org/doi/10.1021/acsami.0c10201
U2 - 10.1021/acsami.0c10201
DO - 10.1021/acsami.0c10201
M3 - Article
C2 - 32805944
SN - 1944-8244
JO - ACS Applied Materials & Interfaces
JF - ACS Applied Materials & Interfaces
ER -