Abstract
Magnetically triggered release from magnetic giant unilamellar vesicles (GUVs) loaded with Alexa fluorescent dye was studied by means of confocal laser scanning microscopy (CLSM) under a low-frequency alternating magnetic field (LF-AMF). Core/shell cobalt ferrite nanoparticles coated with rhodamine B isothiocyanate (MP@SiO 2(RITC)) were prepared and adsorbed on the GUV membrane. The MP@SiO 2(RITC) location and distribution on giant lipid vesicles were determined by 3D-CLSM projections, and their effect on the release properties and GUV permeability under a LF-AMF was investigated by CLSM time-resolved experiments. We show that the mechanism of release of the fluorescent dye during the LF-AMF exposure is induced by magnetic nanoparticle energy and mechanical vibration, which promote the perturbation of the GUV membrane without its collapse. © 2011 American Chemical Society.
Original language | English (US) |
---|---|
Pages (from-to) | 713-718 |
Number of pages | 6 |
Journal | The Journal of Physical Chemistry Letters |
Volume | 2 |
Issue number | 7 |
DOIs | |
State | Published - Mar 10 2011 |
Externally published | Yes |