TY - JOUR
T1 - Magnetoelectric Memory Based on Ferromagnetic/Ferroelectric Multiferroic Heterostructure.
AU - Wang, Jiawei
AU - Chen, Aitian
AU - Li, Peisen
AU - Zhang, Sen
N1 - KAUST Repository Item: Exported on 2021-08-30
Acknowledgements: This research was funded by the National Natural Science Foundation of China (NSFC Grant Nos. 12074429 and 11504327), and Scientific Research Foundation of Zhejiang University of Technology.
PY - 2021/8/27
Y1 - 2021/8/27
N2 - Electric-field control of magnetism is significant for the next generation of large-capacity and low-power data storage technology. In this regard, the renaissance of a multiferroic compound provides an elegant platform owing to the coexistence and coupling of ferroelectric (FE) and magnetic orders. However, the scarcity of single-phase multiferroics at room temperature spurs zealous research in pursuit of composite systems combining a ferromagnet with FE or piezoelectric materials. So far, electric-field control of magnetism has been achieved in the exchange-mediated, charge-mediated, and strain-mediated ferromagnetic (FM)/FE multiferroic heterostructures. Concerning the giant, nonvolatile, and reversible electric-field control of magnetism at room temperature, we first review the theoretical and representative experiments on the electric-field control of magnetism via strain coupling in the FM/FE multiferroic heterostructures, especially the CoFeB/PMN–PT [where PMN–PT denotes the (PbMn1/3Nb2/3O3)1−x-(PbTiO3)x] heterostructure. Then, the application in the prototype spintronic devices, i.e., spin valves and magnetic tunnel junctions, is introduced. The nonvolatile and reversible electric-field control of tunneling magnetoresistance without assistant magnetic field in the magnetic tunnel junction (MTJ)/FE architecture shows great promise for the future of data storage technology. We close by providing the main challenges of this and the different perspectives for straintronics and spintronics.
AB - Electric-field control of magnetism is significant for the next generation of large-capacity and low-power data storage technology. In this regard, the renaissance of a multiferroic compound provides an elegant platform owing to the coexistence and coupling of ferroelectric (FE) and magnetic orders. However, the scarcity of single-phase multiferroics at room temperature spurs zealous research in pursuit of composite systems combining a ferromagnet with FE or piezoelectric materials. So far, electric-field control of magnetism has been achieved in the exchange-mediated, charge-mediated, and strain-mediated ferromagnetic (FM)/FE multiferroic heterostructures. Concerning the giant, nonvolatile, and reversible electric-field control of magnetism at room temperature, we first review the theoretical and representative experiments on the electric-field control of magnetism via strain coupling in the FM/FE multiferroic heterostructures, especially the CoFeB/PMN–PT [where PMN–PT denotes the (PbMn1/3Nb2/3O3)1−x-(PbTiO3)x] heterostructure. Then, the application in the prototype spintronic devices, i.e., spin valves and magnetic tunnel junctions, is introduced. The nonvolatile and reversible electric-field control of tunneling magnetoresistance without assistant magnetic field in the magnetic tunnel junction (MTJ)/FE architecture shows great promise for the future of data storage technology. We close by providing the main challenges of this and the different perspectives for straintronics and spintronics.
UR - http://hdl.handle.net/10754/670802
UR - https://www.mdpi.com/1996-1944/14/16/4623
U2 - 10.3390/ma14164623
DO - 10.3390/ma14164623
M3 - Article
C2 - 34443144
SN - 1996-1944
VL - 14
SP - 4623
JO - Materials (Basel, Switzerland)
JF - Materials (Basel, Switzerland)
IS - 16
ER -